
A Software Caching Runtime for Embedded NVRAM
Systems

Harrison Williams
hrwill@vt.edu
Virginia Tech

USA

Matthew Hicks
mdhicks2@vt.edu
Virginia Tech

USA

Abstract
Increasingly sophisticated low-power microcontrollers are
at the heart of millions of IoT and edge computing deploy-
ments, with developers pushing large-scale data collection,
processing, and inference to end nodes. Advanced work-
loads on resource-constrained systems depend on emerging
technologies to meet performance and lifetime demands.
High-performance Non-Volatile RAMs (NVRAMs) are one
such technology enabling a new class of systems previously
made impossible by memory limitations, including ultra-
low-power designs using program state non-volatility and
sensing systems storing and processing large blocks of data.
Unfortunately, existing NVRAM significantly underper-

forms SRAM’s access latency/energy cost and flash’s read
performance—condemning systems dependent on NVRAM
to pay a steep energy and time penalty for software execu-
tion. We observe that this performance penalty stems pre-
dominately from instruction fetches into NVRAM, which
represent >75% of memory accesses in typical embedded soft-
ware. To eliminate this performance bottleneck, we propose
SwapRAM , a new operating model for NVRAM-based plat-
forms which repurposes underutilized SRAM as an instruc-
tion cache, maximizing the proportion of accesses directed
towards higher-performance SRAM. SwapRAM consists of a
set of compile-time code transformations and a runtime man-
agement system that transparently and dynamically copies
code into SRAM throughout execution, with an extensible
logic to delay eviction of hot code. Across nine embedded
benchmarks running on a real FRAM platform, SwapRAM’s
software-based design increases execution speed by up to
46% (average 26%) and reduces energy consumption by up
to 36% (average 24%) compared to a baseline system using
the existing hardware cache.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0391-1/24/04.
https://doi.org/10.1145/3622781.3674183

ACM Reference Format:
Harrison Williams and Matthew Hicks. 2024. A Software Caching
Runtime for Embedded NVRAM Systems. In 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 4 (ASPLOS ’24), April 27-May 1,
2024, La Jolla, CA, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3622781.3674183

1 Introduction
Ultra-low-power embedded systems bring intelligence and
connectivity to domains traditionally beyond the reach of
computing devices due to power, size, or cost constraints.
Shrinking device sizes combined with increasingly power-
ful, high-resolution sensors enable new applications and
information streams—including deeply deployed image cap-
ture and recognition [7, 15], environmental/urban monitor-
ing [8, 21, 26], and implantable/wearable devices [9, 10]—but
also dramatically increase the data handling workload rela-
tive to available computational and energy resources. State-
of-the-art mobile/Internet-of-Things deployments depend
on novel techniques at the architecture, device, and protocol
levels to meet performance and lifetime requirements.

Emerging Non-Volatile RAMs (NVRAMs), which blend the
non-volatility and density of traditional flash memory with
the read/write performance of Static RAM (SRAM), are one
such innovation underpinning new approaches to low-power
edge computing. High-density, byte-addressable NVRAMs
enable long-lived sensing deployments recording bulk data
on-chip, where such deployments were previously limited
by flash’s high write energy and low program/erase en-
durance [22, 48]. Several candidate technologies—including
Spin-Torque Transfer Magnetoresistive RAM, Resistive RAM,
and Ferroelectric RAM (FRAM)—demonstrate promising per-
formance [11, 35]; many of today’s systems depend on FRAM,
which is commercially available as a flash replacement on
a fully integrated system-on-chip [40]. Research using com-
mercial FRAM-based systems demonstrates the value of
unified NVRAM storing both code and data for 1) its non-
volatility enabling ultra-low-power hibernation modes dis-
abling volatile memory [5, 24] and 2) its density advantage
over SRAM (approximately 1 transistor per bit versus 6 for
SRAM [23, 39]) supporting more sophisticated and memory-
intensive applications on low-power devices [19, 28, 49].

https://doi.org/10.1145/3622781.3674183
https://doi.org/10.1145/3622781.3674183
https://doi.org/10.1145/3622781.3674183


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Harrison Williams and Matthew Hicks

Unfortunately, current deployments of existing NVRAMs
underperformmoremature SRAM and flashmemories in sev-
eral important ways that limit the performance of NVRAM-
based systems. Despite potential theoretical improvements,
recently-commercialized embedded FRAM sacrifices read
speed and energy versus similar flash memories [42, 45].
FRAM reads andwrites are also both slower andmore energy-
intensive than similar SRAM accesses. As a result, FRAM cur-
rently falls short as a general-purpose, drop-in replacement
for either memory technology due to its slower access rate
when fetching instructions and limited interface width when
accessing data. Thus, designers of ultra-low size, weight, and
power devices must either accept the lower performance of
current NVRAMs, or increase system size, cost, and complex-
ity by switching to a larger device with sufficient SRAM—lest
they forgo the application entirely.

Platform designers mitigate NVRAM’s underperformance
by allocating an on-chip buffer to use as a read cache for
code execution [42]. While this buffer reduces pressure on
the NVRAM, it forces a permanent tradeoff: SRAM allocated
to the NVRAM cache cannot be used as main memory, and
main memory cannot be used as an NVRAM cache. Sev-
eral factors, including hardware overhead and the increas-
ing memory demands of emerging applications, dictate that
hardware designers designate the vast majority of SRAM as
program memory to maximize the resources available to the
programmer and use comparatively little for caching (e.g., a
32 byte cache as part of the memory controller for a 128KiB
FRAM [42]). Systems using FRAM as unified memory realize
a limited improvement from existing caches, as CPU accesses
to disjoint code and data addresses cause cache contention
(Section 2.2)—failing to address the performance penalty for
a primary use case of NVRAM devices.
We observe that SRAM underutilization in current

NVRAM systems, combined with insights about the mem-
ory access patterns typical of embedded software, enables
techniques to mitigate poor access characteristics and bring
the common-case performance of NVRAM systems into
line with those using mature non-volatile memory technolo-
gies while maintaining the unique advantages of NVRAM.
Unified-memory systems avoid the size limitations of SRAM
by mapping program data into NVRAM, leaving small but
performant SRAM free for reuse. On today’s general-purpose
low-power devices, however, users cannot change the hard-
ware cache size and must instead implement such a cache
in software. A software approach to caching has a new set
of tradeoffs: increasing complexity increases runtime over-
head, as the processor spends cycles managing the cache
instead of executing application code. At the same time, shift-
ing cache design from processor-design-time to software-
compile-time allows software specific information sources
to improve caching performance (such as typical access pat-
terns and control flow analysis).

We build on prior work developing software-based in-
struction caches designed to overcome the limitations of
code storage in Dynamic RAM (DRAM) for mid- to high-end
embedded systems [33]. This approach embeds fine-grain
(i.e., basic-block-level) instrumentation throughout the pro-
gram to precisely predict instruction fetches and minimize
the number of time-intensive DRAM accesses, while book-
keeping to track the block-level cache overlaps with DRAM
access stalls—effectively masking the delay introduced by
additional software effort maintaining the cache. However,
today’s highly integrated low-power systems present a dif-
ferent set of constraints that make them a poor fit for ex-
isting work. The NVRAM used to store code is integrated
directly onto the processor die, dramatically reducing the
time penalty for a cache miss (e.g., to 3 cycles on our evalua-
tion platform) compared to discrete DRAM chips and expos-
ing the latency introduced by fine-grain software caching.
SRAM main memory—which provides lower power accesses
and runs at full CPU speed with no cache—is scarce owing to
its low density combined with system size constraints, limit-
ing the amount of cache metadata a system can maintain in
SRAM without starving itself of space for application code
storage. These new tradeoffs and challenges give rise to the
central question this paper addresses: can an efficient and
effective instruction cache for resource-constrained
low-power systems be implemented purely in soft-
ware?

We answer this question affirmatively by designing, imple-
menting, and evaluating SwapRAM , a lightweight code trans-
formation toolchain and runtime that maximizes code exe-
cution out of SRAM by transferring instructions into SRAM
“just-in-time” during execution. SwapRAM’s code transfor-
mation component modifies application code at the assembly
level, rendering functions runtime-relocatable to facilitate
execution out of arbitrary addresses in SRAM. SwapRAM’s
runtime interposes on calls to uncached functions, copy-
ing code into SRAM and transferring control flow to the
newly cached version. The runtime maintains metadata de-
scribing cache usage and each cached function to prioritize
candidates for eviction, minimizing thrashing while maxi-
mizing the time applications spend executing out of SRAM.
SwapRAM’s runtime makes flexible, intelligent caching de-
cisions by predicting program behavior based on static and
dynamic code analysis, extending the temporal/spatial local-
ity concepts underlying hardware caches across the semantic
gap.
We implement and evaluate SwapRAM on a Commer-

cial Off-The-Shelf (COTS) low-power FRAM-based micro-
controller [43], executing nine embedded benchmarks from
the MiBench2 suite [18, 20]; we measure energy consump-
tion and total runtime for each benchmark to quantify
SwapRAM’s end-to-end impact on real systems’ performance.



A Software Caching Runtime for Embedded NVRAM Systems ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

We compare SwapRAM both to baseline systems execut-
ing code out of FRAM and a prior software-based instruc-
tion cache originally targeting systems using external (e.g.,
DRAM) code storage [33]; our results indicate that SwapRAM
eliminates on average 65% of FRAM accesses by efficiently
shifting execution to SRAM, resulting in an average execu-
tion speed improvement of 26% and energy reduction of 24%
across benchmarks compared to baseline execution out of
FRAM using the existing hardware cache. SwapRAM real-
izes this significant performance improvement on resource-
constrained platforms where prior software-based caching
approaches either degrade performance or fail to run at all,
owing to its lightweight code instrumentation system and
runtime. This paper makes the following technical contribu-
tions:

• We quantify memory access patterns in low-power
COTS microcontrollers and find that the majority of
accesses are to code space (Section 2), translating to a
significant performance penalty when code is in stored
in NVRAM operating at a lower frequency than the
digital core or volatile data memory.

• We design and implement SwapRAM , a software sys-
tem implementing an intelligent instruction cache us-
ing on-chip SRAM (Section 3). SwapRAM eliminates
the bottleneck of NVRAM accesses during common-
case code execution, enabling systems to run at their
highest performance and most efficient operating
points.

• We evaluate SwapRAM on a commercial NVRAM-
based system running nine real-world benchmarks;
our results indicate that SwapRAM significantly re-
duces energy consumption while increasing execu-
tion speed, outperforming both FRAM-based execu-
tion and earlier software caching approaches with a
programmer-transparent software update (Section 5).

• We open-source our design/evaluation data for repli-
cation and to enable developers to explore SwapRAM
for deployed systems.

2 Background and Related Work
2.1 Embedded Memory and Software Organization
Typical low-power edge devices employ a flattened memory
model dividing the address space into two distinct sections,
with little to no cache hierarchy [31, 32, 34]. This division is
largely due to historical technical limitations on the memory
available in embedded systems. Such systems store code and
other non-volatile data in either mask ROM or flash memory,
which both offer low cost, high density, and high read perfor-
mance at the cost of poor write performance. Intermediate
program state and results are stored in volatile Static RAM
(SRAM), which offers the highest access performance at the
cost of non-zero static power draw and relatively low density
(DRAM’s high static power due to its need for refresh cycles

0.0

2.5

5.0

7.5

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

FRAM Code, FRAM Data
FRAM Code, SRAM Data
SRAM Code, FRAM Data
SRAM Code, SRAM Data

8 MHz 24 MHz
Clock Frequency

0

10

20

30

En
er

gy
 (m

J)

Figure 1. Unified memory approaches either limit perfor-
mance (FRAM) or software complexity (SRAM) and—counter
to convention—when forced to separate code and data, code
is best placed in SRAM due to instruction access frequency
and FRAM’s slower access rate.

precludes its use in energy-constrained systems). Software
treats non-volatile memory sections as functionally read-
only during normal operation; while many devices include
the necessary circuitry for in-system flash writes for initial
programming or software updates, writing to flash is a slow,
energy-intensive, and endurance-limited process rendering
it unsuitable for use as main memory [48].
The success of emerging Non-Volatile RAM (NVRAM)

technologies has given rise to systems which eliminate the
division between non-volatile ROM and volatile RAM [11,
35, 40]. COTS microcontrollers using embedded Ferroelec-
tric RAM (FRAM) as a drop-in replacement for flash mem-
ory are available at price and size points competitive with
flash-based systems [42] and enable deployments using
FRAM’s blend of density, non-volatility, and access perfor-
mance. Long-lived and deeply deployed systems depend
on FRAM for low-power, high volume data capture or
memory-intensive operations (e.g., on-chip inference [4, 16])
previously limited by flash’s energy and endurance con-
straints [15, 22].

2.2 NVRAM as Unified Memory
Beyond data storage, new software approaches demonstrate
the value of using FRAM as a universal memory storing
both code and program data [30, 46]. Mapping program state
into FRAM allows systems to disable the volatile SRAM ar-
ray and minimize static leakage, crucial for low-duty-cycle
battery-powered applications which spendmost of their time
hibernating [3] or batteryless systems which must sustain
state across power failures [5, 19, 28, 29, 49]. Finally, FRAM’s



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Harrison Williams and Matthew Hicks

density advantage over SRAM dramatically increases the
amount of main memory available to software while main-
taining a small footprint: one representative device contains
only 2KiB of SRAM, but 128KiB of FRAM [42] which de-
signers can split arbitrarily according to their needs in a
unified-memory approach—allowing deployment of more
complex or memory-intensive software on ultra-low-power
devices.
Unfortunately, FRAM’s current performance means sys-

tems pay a steep cost for its unique flexibility during
common-case execution, as FRAM accesses are slower and
more energy-intensive than similar SRAM accesses or flash
reads. Commercial microcontroller-embedded FRAM oper-
ates at a maximum access frequency of 8MHz, despite the
cores surrounding it running at up to 24 MHz [43]—forcing
chip designers to artificially reduce effective clock frequency
using wait states when accessing FRAM. Even at clock fre-
quencies below FRAM’s maximum, current FRAM-based
systems consume over twice the power of comparable flash
devices during program execution [43, 47]. For these rea-
sons, commercial FRAM-based devices include a read cache
to limit the number of wait states incurred while executing
from FRAM [43].
Using FRAM as unified memory to store both code and

data aggravates energy and runtime penalties by increasing
the number of FRAM accesses and reduces the hit rate of
hardware caches supporting the FRAM, owing to the poor lo-
cality of alternating accesses to code/data space. We quantify
the performance of different memory allocation approaches
by measuring the runtime and energy consumption of an
arithmetic benchmark on an FRAM-based MSP430FR2355
(Section 4 describes our setup in more detail) while vary-
ing the physical location of code and data. We illustrate
the results in Figure 1. Unified-memory operation signifi-
cantly underperforms the "standard" configuration of stor-
ing code in FRAM and data in SRAM, even at 8 MHz—the
frequency at which the CPU can access FRAM with zero
wait states—because a single instruction execution can dis-
patch multiple simultaneous accesses to distant addresses in
FRAM, bottlenecking memory accesses at the cache. Config-
urations which store at least one of code or data in SRAM
reduce cache contention and eliminate wait states; placing
and executing code in SRAM and data in FRAM further im-
proves performance by reducing FRAM reads because most
memory accesses are to code space (Section 2.4). Placing
both code and data in SRAM maximizes performance, but is
impractical as most deployments cannot fit both code and
data in SRAM. The shortcomings associated with unified-
memory operation prevent developers from taking advan-
tage of FRAM as main memory due to the heavy time and
energy penalty, and significantly degrade the performance
of systems dependent on embedded NVRAM for memory-
intensive processing—disqualifying NVRAM-based systems

from energy- and performance-constrained applications they
are otherwise uniquely suited for.
Research addressing NVRAM’s applications in energy-

constrained systems focuses largely on its use in batteryless
devices, where FRAM is the only commercially available op-
tion to reliably sustain execution across power failures [5,
24, 25, 30]. Hardware approaches to mitigate NVRAM under-
performance range from simple write-through caches [27]
to multi-level, runtime-reconfigurable caches that write the
minimal amount of data to NVRAM to maintain correctness
across power cycles [13].While hardware techniques provide
a powerful tool for mitigating NVRAM underperformance,
they require architectural modifications and compete with
other hardware components for space and power on already
resource-constrained systems.

2.3 Software Caching Techniques
Other work proposes compile-time approaches to reduce
slow-memory pressure and improve performance on existing
systems. Scratchpad-based approaches target systems with
a fast, secondary “scratchpad” memory and insert code to
copy hot data or small, frequently-executed code loops into
the scratchpad [37, 38]. Static approaches demonstrate the
potential of offloading typically non-volatile data to faster,
volatile memory, but 1) depend on the programmer to adapt
to context- or data-dependent execution paths that change
the energy cost or access pattern of a given workload and
2) lack the ability to dynamically load code or data into
SRAM at runtime, limiting the realized benefit when SRAM
is scarce. As embedded programs grow in both complexity
and size, a new approach is needed to maximize performance
on embedded NVRAM systems.
One general-purpose approach is presented by Miller et

al. [33] as an alternative to hardware-based caches for em-
bedded systems which store code in external DRAM. They
instrument each basic block in application code at compile
time to redirect control-flow instructions to a caching run-
time, which loads the subsequent basic block into SRAM and
rewrites the original control-flow instruction to point to the
now-cached block. Cache management overhead—selecting
a location in SRAM, updating metadata, and rewriting the
old instruction—is masked by the latency of external DRAM
accesses. We evaluate this approach alongside SwapRAM and
show that the highly-integrated and resource-constrained
systems we target are a poor fit for the basic-block caching
technique owing to its high memory and runtime overhead
(Section 5).

2.4 Memory Access Patterns
Typical low-power embedded systems execute code di-
rectly from flash and store program data entirely in on-chip
SRAM. While flash-based systems can realize a performance
improvement by copying code to and executing it from
SRAM [45], code in SRAM competes with volatile data which



A Software Caching Runtime for Embedded NVRAM Systems ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Benchmark Binary
Size (B)

RAM
Usage (B)

Code/Data
Access Ratio

Stringsearch (STR) 12232 7586 1.620
Dijkstra (DIJ) 21956 8324 4.679

CRC 1470 562 3.448
RC4 3724 4444 1.944
FFT 23014 4768 3.749
AES 9608 674 3.947
LZFX 11085 10794 2.656

Bitcount (BIT) 4344 720 2.740
RSA 6331 332 2.530
Average Access Ratio 3.035

Table 1. Proportion of accesses to code and data space for
embedded benchmarks we evaluate SwapRAM on.

cannot be remapped anywhere else—limiting the amount of
already-scarce SRAM available for code storage. Embedded
NVRAMs eliminate this restriction: software can map both
code and volatile data to relatively-plentiful NVRAM, freeing
all of the smaller but higher-performance SRAM to handle
“hot” memory accesses. This paper demonstrates how to use
this insight to 1) eliminate the performance bottleneck inher-
ent to current NVRAMs by shifting the maximum number of
accesses to SRAM and 2) do so entirely in software to address
existing and near-future hardware-constrained systems.

SRAM’s scarcity means that systems must be selective in
choosing what to offload from lower-performance NVRAM.
What kinds of memory accesses dominate in embedded soft-
ware? We port nine benchmarks from the MiBench2 em-
bedded benchmark suite [18, 20] (the subset that fits on our
evaluation platform, Section 4) to the MSP430, a low-power
architecture available on COTS NVRAM systems [43]. We
then run each benchmark in a modified version of the open-
source mspdebug [6] simulator tracking all memory accesses,
and categorize each access as one to code space or data space.
Table 1 describes the proportion of code to data accesses

for the benchmarks we evaluate. In every case, software ac-
cesses code space significantly more often than data space—
on average over 3x more frequently, and in some cases up
to nearly 5x as often. The dominance of code accesses is
a consequence of a register-based processor architecture:
software stores commonly-used values in architectural reg-
isters to minimize memory accesses, but each instruction
fetch requires an access to code memory (or the instruction
cache when one exists). Most instructions are register-to-
register operations that only access memory to fetch the
instruction. Our MSP430-based results likely underestimate
the proportion of instruction fetches on the memory bus for
microcontrollers in general: MSP430 instructions can operate
on memory directly, while many architectures only access
memory through dedicated load/store instructions [2, 31].
The energy/performance overhead of instruction supply

is one motivating factor for novel architectures (e.g., vector-
dataflow execution [17]), but remains an obstacle for current

low-power systems. In this paper, we extend the concept of
multi-use memory—previously introduced by work which re-
purposes cache as directly addressable memory [12, 14]—to
existing systems by using SRAMmain memory as an instruc-
tion cache. We also build on prior work which developed
software caches for DRAM-based systems [33] where the
inclusion of a hardware-based cache is deemed prohibitively
design- or area-intensive. We demonstrate how a software
caching approach tailored to low-power, highly-integrated
systems can eliminate the majority of NVM accesses (an av-
erage reduction of 65% in our experiments) by caching code
in higher-performance on-chip SRAM, maximizing perfor-
mance on current and near-future NVRAM-based devices.

3 Design
At its core, SwapRAM implements an instruction cache in
software. SwapRAM exploits the same temporal and spatial
locality that motivates hardware-based caches, predicting
future accesses in order to amortize the cost of data move-
ment. However, a software-level implementation exposes
new opportunities and limitations demanding different de-
sign choices to maximize performance improvement. Three
high-level observations inform our design:

1. Software cache loading is expensive: Loading in-
structions into SRAM through software is a heavy-
weight process.While a hardware cache uses dedicated
circuits to quickly populate fast memory on demand,
a software approach must sequentially redirect con-
trol flow to a copy function, copy code into SRAM,
update metadata, and redirect execution to the SRAM
code copy. SwapRAM’s high performance depends on
the insights below to maximize hit rate and amortize
overhead over many SRAM executions.

2. Rich application-level information provides a
unique source of direction for caching decisions:
Hardware approaches achieve generality and perfor-
mance by exploiting fine-grain, address-level local-
ity; SwapRAM additionally exploits high-level trends
based on semantic information, program analysis, and
insights about the C runtime1 not readily available at
the architectural level. In particular, we demonstrate
how function-level locality and call-stack monitoring
allow SwapRAM to predict memory accesses and ac-
curately pre-fetch code for execution far in the future.

3. A flattened memory architecture enables flexibil-
ity in memory accesses: Application code can fetch
instructions from either NVM or SRAM: code in a flat
memory architecture does not need to be cached in or-
der for the processor to read and execute it. SwapRAM
can deliberately avoid caching rarely accessed code
when doing so would evict more frequently used code,

1SwapRAM targets C-based systems, which dominate the embedded soft-
ware ecosystem today.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Harrison Williams and Matthew Hicks

when pre-existing hardware caches would effectively
handle incoming execution, or when the transfer over-
head outweighs the savings from SRAM execution.

3.1 SwapRAM Overview and Interface
SwapRAM consists of two central components: a compile-
time, assembly-level pass and a run-time module. Figure 2
shows an overview of SwapRAM’s compile-time pass and
runtime behavior. SwapRAM’s static pass patches applica-
tion code to render it safely runtime-relocatable and deter-
mines the size of code blocks to be cached (Section 3.2). The
SwapRAM runtime interposes on regular execution and redi-
rects calls to uncached functions to a cache miss handler,
which:

1. Decides whether and where to cache the called func-
tion based on cache state.

2. Determines which, if any, currently cached functions
need to be evicted to clear space.

3. Copies the target function into SRAM.
4. Updates metadata and redirection information (Sec-

tion 3.2) for the newly cached and evicted functions.
5. Branches to the newly cached function.

SwapRAM typically requires no application code modifica-
tions (with the exception of jump tables, see Section 4) and
is programmer-transparent, although we include a black-
list option to exclude specific functions from caching when
they have strict timing requirements or are known to exe-
cute infrequently. Otherwise, users only need to integrate
SwapRAM’s instrumentation scripts and runtime library into
the compile toolchain.

3.2 Dynamic Function Redirection
Hardware caches normally operate on fixed-size blocks set at
processor design time by the size of a cache line. SwapRAM’s
software-based design shifts block size from a hardware-
design-time decision to a software-run-time one, allow-
ing program-specific and flexible block sizes. However, a
software-level implementation also means SwapRAM cannot
directly examine memory requests and must instead embed
code throughout the application to predict which instruc-
tions will be executed. Maximizing end-to-end performance
using software instrumentation is a balancing act: inserting
more code increases execution overhead, but also allows
SwapRAM to more accurately predict program flow.
The simplest way to predict execution is to instrument

basic blocks: straight-line code sequences terminated with a
control flow decision. Unfortunately, the size and number of
basic blocks in typical programs (thousands of blocks with
5-6 instructions per block [18]) means block-level instrumen-
tation dramatically increases both code size and execution
overhead (an intuition we evaluate as part of Section 5).

To better balance instrumentation overhead and caching
accuracy, SwapRAM caches code at the granularity of func-
tions. Function-level instrumentation offers several advan-
tages that make it effective for SwapRAM: first, function
calls are relatively infrequent (compared to basic blocks)
but still effectively indicate execution path. By caching an
entire function on call, SwapRAM captures temporally and
spatially adjacent code accesses (i.e., to the instructions in
the function) without overloading execution with instru-
mentation. Second, software can modify function call sites
to point to different functions during execution. SwapRAM
uses this to insert calls to its instrumentation and caching
code without increasing instruction count, and to remove
calls to SwapRAM code once a function is cached—reducing
SwapRAM’s impact on common-case execution once a func-
tion is cached.
Figure 3 illustrates how SwapRAM modifies function

calls to support dynamically relocating code into SRAM.
SwapRAM inserts code at the assembly level and compiles
the modified application into an intermediate binary to de-
termine final function size and account for changes made
by linker optimizations (Section 4). SwapRAM replaces all
calls—which are typically calls to absolute addresses in the
original binary—with indirect call instructions to addresses
stored in designated memory locations. On startup, these
addresses point to SwapRAM’s cache miss handler rather
than the original function. At each call site, SwapRAM also
inserts an instruction to write a function-specific funcId
value to a global memory location to signal to the cache miss
handler the function to be cached. The first time program
flow reaches the call instruction, SwapRAM’s miss handler
is invoked.

3.3 Cache Miss Handler
Figure 4 illustrates the low-level behavior of the cache miss
handler, which copies functions into SRAM, updates relo-
cation data, and evicts functions as necessary. The simplest
case is for a small function and an empty cache. Because
SwapRAM replaces call instructions at the assembly level
and is oblivious of function signatures, the first step is to
save registers containing function arguments as defined by
the platform calling convention. SwapRAM’s miss handler
then uses the funcId value and a lookup table generated
by the static pass to determine the size and NVM address of
the target function. SwapRAM uses this information along
with the current cache state to determine where to place
the function (for an empty cache, SwapRAM begins with the
lowest SRAM address). Finally, SwapRAM performs the copy,
updates the call address to point to the SRAM copy, restores
argument registers, and branches to the SRAM function copy.
Later calls to the same function point directly to the cached
version, bypassing the miss handler and incurring only the
overhead of the added call-site instructions.



A Software Caching Runtime for Embedded NVRAM Systems ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

ASM

C
Code

Code
Transformations

Final Analysis,
Generate Runtimemain:

...
func(x, y);
x++;
y++;
func(x, y);
...

func:
int z = x / y;
z++;
...
return;

1
3

1amain:
...
func(x, y);
x++;
y++;
func(x, y);
...

2

4

1b
1c

cacheMiss(func)

func:
int z = x / y;
z++;
...
return;

func:
int z = x / y;
z++;
...
return;

Copy to
SRAM

2

3

4

Implied Program Flow Instrumentation Pass SwapRAM Execution

Intermediate Binary

SwapRAM Binary

Figure 2. Overview of SwapRAM’s code generation, instrumentation, and basic execution model. Numbers indicate order of
edges taken during program execution.

Original Func0

Original Main Main

Func0
...

CALL Func1
...

BR farLabel
...

farLabel: ...

Original Binary

...
CALL Func0

...

SwapRAM BinaryASM
Transformations

Func0: ID 0

Func1: ID 1

...

CALL *Func0_runAddr

...

MOV #0, funcId
ADD #1, active[0]

SUB #1, active[0]

...

CALL *Func1_runAddr

...
BR *reloc1

...
farLabel: ...

MOV #1, funcId
ADD #1, active[1]

SUB #1, active[1]

Figure 3. Assembly-level changes made by SwapRAM’s
static instrumentation pass.

3.3.1 Branch Relocation. Dynamic code relocation in-
troduces several challenges for SwapRAM to keep execu-
tion correct and performant; one complicating factor is PC-
modifying instructions. Embedded architectures typically
modify control flow using both PC-relative and absolute
branches:

• PC-relative branches encode an offset to add to the
current PC and are position-independent, i.e., they point
to the correct instruction regardless of the absolute ad-
dress of the entire function. Relative branches work as
intended when SwapRAM moves functions, but have a
limited range because such instructions are tradition-
ally used for conditional branching and spend part of
the instruction word specifying a condition.

• Absolute branches have a longer range but set the
PC to a fixed address regardless of the instruction’s
location. Without modification, executing an SRAM

Cache
miss

Read
funcID

Save arg
registers

Yes
No

Cache
empty?

Restore arg
registers, fix stack

dst = SRAM_BASE

Copy func
to dst

dst = tailNode.runAddr +
tailNode.size

NoYes
dst + funcSize < SRAM_END? dst = SRAM_BASE

(wrap-around)

Yes No
tailNode.next = NULL?

curNode = headNode

Eviction handler

headNode = funcNode

tailNode = funcNode

Branch to func
in SRAM

tailNode = funcNode

tailNode.next = funcNode

after = tailNode.next

Yes No

dst + funcSize < after.runAddr?

funcNode.next = after

curNode = after

func.reloc[i] = func.runAddr + func.relocBase[i] - func.framAddr

for i in
func.relocs

func.runAddr = dst

Figure 4. SwapRAM runtime component invoked upon
cache miss for a circular-queue cache structure.

copy of an absolute branch causes program flow to
branch back into NVM and incur the performance
penalty of executing from slower NVRAM.

SwapRAM renders absolute branches relocatable using
a value stored in memory rather than an instruction-
encoded immediate (Figure 3). Instead of an absolute ad-
dress, SwapRAM represents each branch target as an offset
𝑜 𝑓 𝑠 = 𝑏𝑟𝑎𝑛𝑐ℎ𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑓 𝑛𝐵𝑎𝑠𝑒 from the base address of the



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Harrison Williams and Matthew Hicks

function containing it. SwapRAM’s static pass associates
each absolute branch with a separate reloc memory entry
and adds this offset to the function’s base address in SRAM
during a cache miss (Figure 4). When execution reaches the
cached version of the branch instruction, the PC receives the
previously calculated reloc value pointing to the cached
version of the branch target—keeping execution in higher-
performance SRAM.

3.3.2 Function Eviction. Eventually, SRAM will reach
capacity and SwapRAM will need to clear space for a newly-
called function. SwapRAM evicts functions only when at-
tempting to cache a new one; after deciding where in SRAM
to place the new function (Section 3.4), SwapRAM’s runtime
steps through the metadata and flags for evicting each func-
tion that overlaps with the memory range for the incoming
function to be cached. Flagging a function for eviction does
not guarantee that it will actually be evicted (Section 3.3.3)—if
all flagged functions can be evicted, SwapRAM loops through
the flagged functions again and finishes the eviction process.
Function eviction consists of resetting the function’s meta-
data: namely, updating the cache data structure, pointing the
function redirection entry back to the cache miss handler,
and resetting the branch relocation entries (which must be
reset in case SwapRAM later executes the function out of
NVM, see Section 3.3.3).

3.3.3 Call Stack Integrity. Function eviction requires spe-
cial care when cached code calls other functions. Subsequent
calls to different functions will be redirected to SwapRAM’s
miss handler if the new function is not cached, which may
in turn evict the original calling code from the cache. If
SwapRAM evicts and overwrites code on the call stack, how-
ever, execution will crash after the PC returns to the original
call site that no longer contains the expected code.
We ensure call stack integrity using a per-function

active counter. SwapRAM inserts instructions to incre-
ment/decrement a function’s active counter2 before/after it
is called (shown in Figure 3) and does not evict functions
with non-zero active counters during execution. If during
a cache miss SwapRAM attempts to evict an active func-
tion, SwapRAM aborts the caching operation and executes
the function that triggered the miss from NVRAM. This ap-
proach guarantees correctness at a typically low runtime
cost but in principle gives rise to the pathological case of a
function repeatedly failing to evict its own caller, reducing
performance when SwapRAM invokes the miss handler each
time.

3.4 Cache Memory Structure
SwapRAM’s software implementation enables flexibility
in how and where functions are cached in SRAM. Two

2Using a counter rather than a binary flag allows SwapRAM to support
recursive programming where one function may have multiple stack frames.

Metadata Func0
Node

SRAM Empty

Func1
Node

Func2
Node

Func3
Node

Start

Cache
Func0

SRAM EmptyFunc0 Binary

SRAM
Cache
Func3

Func4
Node

Base,
Head

SRAM
Cache
Func4

SRAM
Cache
Func0

Metadata Func0
Node

Func1
Node

Func2
Node

Func3
Node

Func4
Node

Metadata Func0
Node

Func1
Node

Func2
Node

Func3
Node

Func4
Node

Metadata Func0
Node

Func1
Node

Func2
Node

Func3
Node

Func4
Node

Metadata Func0
Node

Func1
Node

Func2
Node

Func3
Node

Func4
Node

Base,
head

Base Head

BaseHead

Func1
Binary Func2 BinaryFunc3

Binary Empty

Func1
Binary Func2 BinaryFunc3

Binary
Func4
Binary

EmptyFunc0 BinaryFunc3
Binary

Func4
Binary

SRAM
Cache
Func1,
Func2

Metadata Func0
Node

Func1
Node

Func2
Node

Func3
Node

Func4
Node

Base Head

Func0 Binary Func1
Binary Func2 Binary

Figure 5. Function memory layout in SRAM throughout
execution using a circular queue.

challenges inform SwapRAM’s memory organization: first,
caching different-sized functions causes fragmentation if
SwapRAM introduces gaps between each function space—
wasting already-scarce SRAM. Second, SwapRAM must orga-
nize functions in the cache so as to avoid evicting soon-to-be-
executed code or attempting to evict code on the call stack.
SwapRAM must balance these demands with complexity to
minimize runtime overhead.
We represent each function using a node containing the

relevant metadata for that function: the function’s address in
NVRAM, the current address to execute from, size, and active



A Software Caching Runtime for Embedded NVRAM Systems ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Listing 1. Original
CMP R12, R13
JGE block2

block1:
MOV #1, R14
...

block2:
MOV #0, R14
...

Listing 2. Transformed
CMP R12, R13
JL label1
BRA block2

label1:
BRA block1

block1:
MOV #1, R14
...

block2:
MOV #0, R14
...

Figure 6. Transformations for block-level caching and ex-
tending the range of conditional CFIs on the MSP430.

counter. Organizing these nodes, and their corresponding
SRAM function copies, into a certain data structure defines
how SwapRAM addresses the challenges described above.
This data structure effectively sets SwapRAM’s replacement
policy. For example, storing functions and their nodes as a
stack maximizes memory efficiency by placing functions at
contiguous addresses in SRAM but compromises on eviction
behavior by forcing a "most-recently-cached" replacement
policy (which is counterproductive when considering both
temporal locality and that recently-cached code is likely to
be on the call stack and therefore be un-evictable).

Our proof-of-concept design uses a circular queue to bal-
ance data density and eviction behavior. Figure 5 illustrates
how SwapRAM stores and evicts functions in SRAM through-
out execution. Compared to a stack, a queue sacrifices a small
degree of data density—allowing empty space both at the end
of SRAM and following the head of the queue—for improved
eviction behavior. A queue’s first-in-first-out structure re-
sults in a “least-recently cached” replacement policy, better
aligning with the temporal locality of code accesses and
reducing the chance that functions attempt to evict their
ancestors. A circular queue supports high data density and
efficient eviction behavior with a relatively simple imple-
mentation; more sophisticated data structures would enable
more intelligent caching decisions (e.g., a cost function to
discourage evicting large functions using a priority queue),
although we leave this exploration for future work.

4 Implementation
We develop SwapRAM as a set of Python scripts both

for code instrumentation/transformation and for generating
SwapRAM’s C runtime code. SwapRAM’s static instrumen-
tation script takes unmodified assembly code and processes
it in two passes. The first pass applies the code transforma-
tions, inserts SwapRAM’s instrumentation instructions, and
compiles an intermediate binary. The second pass uses the

intermediate binary to determine function sizes and base off-
sets for each branch relocation, generating the runtime and
finally producing a standalone binary ready for deployment.

Target Platform: Our SwapRAM implementation targets
the Texas Instruments MSP430FR line of devices, commer-
cial microcontrollers with embedded FRAM NVM [34]. The
MSP430 is a scalar, in-order 16-bit architecture optimized
for low power draw commonly found in mobile systems
and lightweight sensing and processing tasks [1, 26, 36].
We first evaluate SwapRAM on a version of the open-source
mspdebug simulator [6] modified to record memory accesses
and CPU cycle counts in order to track fine-grain execution
statistics not readily available on physical platforms. We
then evaluate SwapRAM’s real-world performance improve-
ment using a physical MSP430FR2355 [41, 43] with 32 KiB
of FRAM and 4 KiB of SRAM. The MSP430FR2355 runs up
to a maximum CPU clock frequency of 24 MHz with 8 MHz
FRAM, which we use to explore how baseline FRAM-based
execution and SwapRAM scale with clock frequency.

SwapRAM is architecture-agnostic, except for code to pre-
serve calling convention behavior: our MSP430 platform
passes arguments in registers R12-R15 [44], so the miss han-
dler preserves these registers. The MSP430-GCC linker at-
tempts to implement all branches as PC-relative, which exe-
cute faster than absolute branches; branches outside of the
-511/+512 word PC-relative range are reverted to absolute
branches. SwapRAM iteratively scans the intermediate (post-
instrumentation) binary for absolute branches to insert relo-
cation code when generating the final binary, as SwapRAM’s
code may push branches outside of the PC-relative range.

Benchmarks: We evaluate SwapRAM using
MiBench2 [18, 20], a collection of embedded bench-
marks representing workloads for resource-constrained
systems. We select the subset of nine MiBench2 programs
that fits on our evaluation platform, detailed in Table 1.
Eight of the nine benchmarks require no source code
modification; however, the bitcount benchmark uses a jump
table to select from multiple functions for counting set bits
in a number. Because SwapRAM’s instrumentation pass
requires the destination of each call instruction at compile
time, we replace the jump table call with a switch statement
to call the correct function using the original table index.
Future iterations of SwapRAM could include an interface
for the programmer to explicitly inform the runtime of
"dynamic" function calls, although we do not explore this
option here.

Baseline Systems: Our baseline implementation executes
code from FRAM using the integrated hardware cache to re-
duce FRAM reads (2-way associative with four 8-byte cache
lines [43]). Five of the nine benchmarks require more pro-
gram memory than our MSP430 has available SRAM. We
first run all benchmarks mapping program memory space



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Harrison Williams and Matthew Hicks

into FRAM using the unified memory model NVRAM tech-
nologies enable (Section 5.4). We then re-evaluate the four
benchmarks that can fit program memory into SRAM to ex-
plore how SwapRAM performs when data and code coexist
in SRAM (Section 5.5). We compile all benchmarks using
the msp430-gcc toolchain [44], running each benchmark 10
times to capture common-case performance after SwapRAM
populates the cache.
We also port the block-based caching technique intro-

duced by Miller et al. [33] to our MSP430 platform for com-
parison against SwapRAM . This approach splits the SRAM
into evenly-sized cache slots and caches application code at
the granularity of basic blocks rather than functions as in
SwapRAM . Every Control-Flow Instruction (CFI) terminat-
ing a basic block initially points to a runtime miss handler (to
identify target blocks, each CFI is associated with a unique
entry point into the runtime); when execution reaches the
miss handler, it places the target basic block into a cache
slot, stores the location of the cached block in a hash ta-
ble, and branches to the cached block. To reduce branches
into the runtime, the runtime chains flow between blocks
by overwriting the initial CFI to point to the newly-cached
target block (analogous to our call redirection approach in
Section 3.2).
For brevity, we only evaluate here the highest-

performance implementation detailed in the original
paper: maximizing chains between cached blocks and
flushing the cache when it is full to eliminate the need for
bookkeeping to undo chains. We experimented with the
physical placement of the metadata and runtime code for
managing the block cache and found that keeping them
in FRAM maximized performance. Placing them in the
SRAM (as in the original design) caused a high degree of
thrashing and subsequent performance loss by reducing the
memory available for caching application code. We compare
SwapRAM to this best-effort port of the block cache which
reserves the entire SRAM for application code caching.

We instrument application code for block caching at the as-
sembly level similar to our SwapRAM implementation, with
additional passes to identify basic blocks and modify CFIs ac-
cordingly. Because conditional branches on the MSP430 are
limited to the -511/+512 PC-relative range and thus cannot
span the range of the SRAM, we replace each conditional
CFI with an absolute branch to the original destination pre-
ceded by an instruction to skip that branch if the opposite
condition is true (Figure 6 gives an example). We also insert
branches at the end of basic blocks when execution would
normally fall through to the subsequent block, as blocks are
not guaranteed to remain contiguous in the cache. For the
hash table we follow the original implementation of a 0.5
load factor and use the djb2 hash [50] as it uses exclusively
shift/add operations, native instructions to the MSP430.

Library Instrumentation: Many embedded programs
use precompiled library functions from binaries generated
as part of the toolchain rather than the application code (e.g.,
floating-point math functions), but SwapRAM’s assembly-
level instrumentation pass cannot operate on compiled bi-
naries. To include these functions in SwapRAM’s (and the
baseline block cache’s) runtime as candidates for caching, we
combine the objdump utility available as part of msp430-gcc
with a script to generate gcc-parsable MSP430 assembly code
corresponding to each library function and integrate that as-
sembly into the SwapRAM workflow as with normal source
code. While disassembly loses some semantic information,
the information SwapRAM needs—intra-function branch des-
tinations and function boundaries—can easily be recovered
programmatically. Large libraries benefit from the function
blacklist interface described in Section 3.1 to exclude un- or
infrequently-used code from caching, as SwapRAM must re-
serve space in the metadata array for each potentially-cached
function (Section 5.2).

5 Evaluation
We evaluate SwapRAM in two stages to explore its effect
on system behavior and performance across a diverse set
of embedded benchmarks. Our simulation-based evaluation
captures how SwapRAM affects low-level behavior—memory
access patterns and overall cycle count—while our deploy-
ment on a physical FRAM platform allows us to compare real
execution time and energy consumption between systems
with and without SwapRAM . The results of this evaluation
serve to answer the following key questions:

1. How effectively does SwapRAM reduce NVRAM pres-
sure by dynamically shifting instruction fetches into
smaller but higher-performance SRAM?

2. To what degree does SwapRAM significantly improve
end-to-end performance by amortizing transfer over-
head over SRAM execution?

3. Does SwapRAM represent an improvement over prior
software-based cache approaches?

5.1 SwapRAM Maintains Program Flow
SwapRAM interposes on and redirects control flow to execute
code from SRAM, but should not otherwise modify program
behavior. We validate that SwapRAM maintains semantically
correct execution by running each benchmark with random
sequences of input data, comparing the output and final
program memory state of each benchmark on the baseline
and with SwapRAM . Each benchmark we use to evaluate
SwapRAM contains a check-sequence to print the results of
the benchmark (e.g., a checksum for the CRC benchmark),
which we print over the on-chip UART to a desktop com-
puter. We compare the output of each benchmark running
on the MSP430FR2355 using both the baseline system and



A Software Caching Runtime for Embedded NVRAM Systems ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

STR DIJ CRC RC4 FFT AES LZFX BIT RSA

BB SR BB SR BB SR BB SR BB SR BB SR BB SR BB SR BB SR

0

5

10

15

20

25

30

M
em

or
y 

Us
ag

e 
(K

iB
)

D
N
F

X

D
N
F

X
D
N
F

X

D
N
F

X

Baseline
Application

Runtime
Metadata

Figure 7. Block-based (BB) and SwapRAM (SR) NVM usage,
showing contribution of transformed application code and
system components.

SwapRAM , validating that SwapRAM does not affect the be-
havior of typical embedded programs. We remove the print
statements and disconnect the serial bus when measuring
benchmark energy and runtime.

5.2 Binary Size and Memory Usage
Transforming application code and adding a runtime sys-
tem are only practical if the resulting binary still fits on the
target platform, an important consideration for the resource-
constrained low-power devices we target. Instrumentation
inlined into the application code is particularly harmful as it
increases the pressure on the SRAM cache when the added
instructions must also be cached. We quantify the effect
SwapRAM and the block-based approach have on overall
binary size in Figure 7, which illustrates the size increase
introduced by both systems. The Application and Runtime
bars illustrate the executable binary size for transformed user
code and runtime management code, respectively, while the
Metadata bars illustrate the size of the structures needed to
track the state of each cache system. We omit the size of
the application’s data area (Table 1) from Figure 7 for clarity
as it does not change with either caching system. Block-
based caching scales poorly with application size: four of our
nine benchmarks do not fit on the evaluation platform after
running the transformation/instrumentation passes, and we
mark these benchmarks as DNF (Does Not Fit).3 Across the
remaining benchmarks, the block-based cache increases total
NVM usage by an average 368%. Several sources contribute
to the overall increase: adding instructions for each basic

3We exclude these benchmarks from average calculations for the block
cache throughout our evaluation.

STR DIJ CRC RC4 FFT AESLZFX BIT RSA
GEOMEAN

BB SR BB SR BB SR BB SR BB SR BB SR BB SR BB SR BB SR BB SR

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

d 
In

st
ru

ct
io

n 
Fe

tc
he

s

D
N
F

X

D
N
F

X

D
N
F

X

D
N
F

X
Code, FRAM
Code, SRAM

Runtime
Memcpy

Figure 8. Dynamic instruction breakdown for each bench-
mark execution using SwapRAM and block-based caching,
normalized to unified-memory operation.

block to branch to the runtime and other cached blocks (Fig-
ure 6) on average approximately doubles application size,
while the metadata and runtime code combined consume
a similar amount of memory. While designers could trade
off performance and memory consumption by reducing the
size of the hash table, the dominant factor in the remaining
memory consumption is the jump table used to inform the
runtime of the target block during a cache miss.

SwapRAM’s coarser-grain, function-level instrumentation
results in an overall average binary size increase of 27%
across all benchmarks. SwapRAM’s effect on application
code size depends mainly on the number of calls to instru-
mented functions and ranges from a 0.1% to a 37% increase.
In many cases, the addition of the cache miss handler dom-
inates SwapRAM’s binary size increase. Miss handler size
varies with the total number of relocatable branches (Sec-
tion 3.3.1) because we insert code to calculate each relocation
upon caching or eviction, but eviction logic makes up the
majority of the function. The total handler size ranges from
972 to 1844 bytes, with an average across our benchmarks
of 1378 bytes.

5.3 SwapRAM Eliminates NVRAM Accesses
SwapRAM achieves its performance improvement by shifting
code accesses that would normally be issued to NVRAM
into SRAM. We use the simulator described in Section 4 to
determine how well SwapRAM reduces NVRAM pressure
and detail the results in Table 2. SwapRAM eliminates on
average 65% of NVRAMaccesses by shifting instruction reads
into SRAM—indicating that SwapRAM’s approach of using
SRAM primarily for code execution successfully reduces
NVRAM pressure.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Harrison Williams and Matthew Hicks

Benchmark STR DIJ CRC RC4 FFT AES LZFX BIT RSA Geo. Mean
Δ

FRAM
Accesses (106)

Baseline 1224.4 275.9 0.6 8.8 5766.6 23.2 31.8 3306.1 0.7

Block-based DNF DNF 0.4
(-33%)

4.4
(-50%) DNF 20.8

(-10%) DNF 1304.7
(-61%)

0.8
(+7%) -34%

SwapRAM
498.4
(-59%)

52.6
(-81%)

0.2
(-75%)

3.8
(-57%)

1969.4
(-66%)

13.9
(-40%)

11.0
(-65%)

946.6
(-71%)

0.4
(-50%) -65%

CPU
Cycles (106)

Baseline 1033.5 388.3 0.7 8.0 6924.5 29.8 31.8 4173.7 0.9

Block-based DNF DNF 1.4
(+100%)

11.2
(+40%) DNF 46.5

(+56%) DNF 5244.3
(+20%)

1.4
(+52%) +52%

SwapRAM
1033.5
(+0.0%)

389.1
(+0.2%)

0.7
(+0.2%)

8.0
(+0.0%)

7538.2
(+8.9%)

37.0
(+24%)

35.3
(+11%)

4367.0
(+4.6%)

1.1
(+16%) +6.9%

Table 2. NVRAM access and software cycle counts for SwapRAM and block-based caching on our simulation platform.
SwapRAM significantly reduces FRAM accesses in exchange for a marginal increase in total (unstalled) cycles, while block-
based caching has a diminished effect on FRAM pressure and significantly increases software effort.

Table 2 also shows the cycle count increase for each bench-
mark execution due to SwapRAM’s instrumentation and
caching code.4 SwapRAM’s cycle overhead scales with 1)
the number of calls an application makes to instrumented
functions due to SwapRAM’s code transformations and 2)
the cycles spent executing runtime code and copying in-
structions to SRAM. While SwapRAM increases the cycles to
completion for each application—an average 6.9% increase,
and in the worst case 24% for the AES benchmark—the per-
formance improvement from executing application code out
of SRAM outweighs SwapRAM’s software overhead (Sec-
tion 5.4).

SwapRAM yields a significant improvement over the block-
based approach, which reduces FRAM accesses by an aver-
age 34%. While the block-based cache is designed never to
execute application code from FRAM, block-level instrumen-
tation causes a large number of both execution branches into
the runtime and accesses to the metadata (which we store
in FRAM to maximize end-to-end performance, Section 4)—
limiting the overall reduction in FRAM pressure. The result
is that the block-based approach ultimately underperforms
the baseline by overloading execution with fine-grain instru-
mentation, increasing the unstalled cycles to completion by
an average 52% over the baseline.

Finally, we extend the simulator to further break down pro-
gram execution using SwapRAM and the basic-block cache.
Figure 8 illustrates the source of each instruction fetched dur-
ing each benchmark, separated into application code fetched
from FRAM or SRAM, each system’s miss handler, and mem-
cpy calls to place functions in SRAM. Block caching entirely
avoids code execution out of FRAM at the cost of significantly
increasing the dynamic instruction count—an average 36% in-
crease5—owing both to frequent jumps into the runtime and
4Our simulation platform does not account for the added cycles from FRAM
wait states, which are captured in Section 5.4 as part of overall execution
speed; the results in Table 2 represent unstalled cycles.
5Increases in dynamic instruction count and cycle count differ because
different MSP430 instructions execute in different numbers of cycles.

STR DIJ CRC RC4 FFT AES
LZFX BIT RSA

GEOMEAN
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Sp
ee

d

D
N
F

X

D
N
F

X

D
N
F

X

D
N
F

X

Block-based SwapRAM

Figure 9. Benchmark execution speed at 24 MHz for
SwapRAM and block-based caching, normalized to unified-
memory operation. SwapRAM significantly increases execu-
tion speed compared to both the baseline and block-based
approaches.

transformations that add instructions to each basic block
in the application (Figure 6). SwapRAM’s relatively light-
weight inline instrumentation increases dynamic instruction
count by 0-10% for each benchmark, while the contribution
from SwapRAM’s runtime is less than 3% for all benchmarks.
Because we expect SwapRAM’s cache miss handler to be
called relatively infrequently, we always execute both it and
memcpy from FRAM.

5.4 SwapRAM Energy and Runtime Performance
To determine how SwapRAM’s execution model affects per-
formance on a real system, we evaluate each benchmark on
an MSP430FR2355 development board [41]. We isolate the
MSP430 using the on-board jumpers and power the device



A Software Caching Runtime for Embedded NVRAM Systems ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

through a sense resistor, across which we measure voltage
and current using an oscilloscope. Each benchmark toggles
a digital pin during execution, which we monitor on the
oscilloscope to trigger power measurements.

We evaluate each system at a clock frequency of 8 MHz—
the highest frequency at which the CPU can access FRAM
without wait states—and 24 MHz, the maximum clock fre-
quency and the most energy-efficient operating point for
the digital core [43]. Figure 9 shows SwapRAM’s and the
block cache’s performance normalized to baseline unified-
memory operation at 24 MHz. The CPU inserts a three-cycle
delay for each FRAM access when operating at 24 MHz and
depends on the cache hardware (Section 4) to access code/-
data without stalls. These FRAM wait states and access cost
significantly limit overall execution speed and efficiency.

Both SwapRAM and the block cache circumvent these wait
states by executing application code directly from SRAM.
While the block-based cache realizes a marginal improve-
ment on two benchmarks—RC4 and bitcount—the in-
creased execution overhead associated with caching at the
block granularity in general outweighs any performance
improvement for the block-based cache, degrading execu-
tion speed compared to the unified-memory baseline by an
average 13% while increasing energy consumption by 12%.
SwapRAM largely eliminates instrumentation and runtime
overhead by caching at the function level and taking advan-
tage of program semantics, improving effective execution
speed by an average 26% while consuming 24% less over-
all energy. SwapRAM realizes a similar but slightly smaller
improvement at 8 MHz, increasing execution speed by an av-
erage 13% and reducing energy consumption by 20%, while
the block-based cache’s performance further degrades to 21%
slower and 19% higher-energy than the baseline.
While all other benchmarks realize a 13-46% execution

speed improvement and 16-36% reduction in total energy
consumption, the AES benchmark is an outlier: SwapRAM
only reduces total energy consumption by between 0.5% and
3.6%, and actually reduces execution speed by 6.4% at 8 MHz.
Table 2 and Figure 8 explain SwapRAM’s relative underper-
formance on AES. SwapRAM increases the cycles to comple-
tion for AES by 24.1%, over twice that of the next-highest
overhead benchmark (LZFX)—and executes the lowest pro-
portion of application code out of SRAM (77.5%). The large
increase in cycles/instructions executed indicates that AES’s
function call patterns cause thrashing as SwapRAM repeat-
edly evicts and re-caches code, while the proportion of appli-
cation code executed from FRAM indicates that SwapRAM
often fails to evict active functions and must use the fall-
back strategy of FRAM execution. While SwapRAM signifi-
cantly improves most benchmarks we evaluate, our results
for the AES benchmark suggest strategies to detect and
reduce thrashing (e.g., by temporarily pausing eviction to

CRC AES BIT RSA GEOMEAN
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Sp
ee

d

Unified
BB, unified
SR, unified

Standard
BB, split
SR, split

Figure 10. Execution speed at 24 MHz across unified- and
split-memory benchmarks, normalized to baseline unified
memory operation.

"freeze" cache state) or more aggressive code transforma-
tions to reduce software cache contention are compelling
directions for future work.

SwapRAM improves performance at 24 MHz by removing
expensive FRAM accesses from the execution path, but also
realizes a similar improvement even at 8 MHz: the frequency
at which FRAM’s access speed no longer limits execution.
Although SRAM’s lower access energy partially explains the
energy reduction, the main benefit of software caching at
lower operating frequencies is eliminating hardware cache
contention (Section 2.2). While unified memory execution
forces the hardware cache to alternate between reads to dis-
joint code and data sections—causing simultaneous accesses
which result in wait states regardless of clock frequency—
SwapRAM reduces hardware cache pressure by offloading
code accesses to SRAM, improving locality of access for the
hardware cache and enabling systems to exploit NVRAM
for program memory storage without the associated perfor-
mance penalty.

5.5 Split SRAM Execution
SwapRAM primarily targets platforms that use NVRAM in a
unified memory configuration to avoid the size constraints
of on-chip SRAM. While memory size is a major driver
of system design and cost, other considerations often de-
termine final microcontroller choice (e.g., accelerators or
analog features)—leading to over-provisioned SRAM when
program memory usage is small. This underutilized SRAM
represents an opportunity to further improve performance
using SwapRAM . We extend our evaluation of SwapRAM and
the block-based cache using the four benchmarks that can fit
programmemory in on-chip SRAM—CRC, AES, bitcount,
and RSA—by splitting the SRAM into two regions: one for



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Harrison Williams and Matthew Hicks

programmemory and one for the code cache. For each bench-
mark, we allocate sufficient SRAM to contain program mem-
ory (Table 1) and reserve the rest for caching. We compare
this implementation to the baseline of executing code using
FRAM/cache and storing program memory in SRAM.

Figure 10 illustrates SwapRAM’s execution speed improve-
ment over the baseline systems in each configuration at 24
MHz, normalized to the original unified-memory results for
context. In the split-memory configuration, SwapRAM real-
izes a 22% speedup and 26% energy reduction compared to
the standard FRAM/SRAM approach—while the block-based
approach at best meets the performance of the standard con-
figuration, and significantly reduces performance on AES
due to thrashing in the smaller cache. SwapRAM yields a sim-
ilar 21% energy reduction at 8 MHz by eliminating relatively
high-energy FRAM accesses, but only an 8% speedup as the
baseline needs no wait states for FRAM accesses. These re-
sults demonstrate that SwapRAM’s approach nearly entirely
eliminates the performance penalty of unified-memory oper-
ation when compared to the standard memory configuration,
and is an effective way to maximize performance for any
application on FRAM systems with underutilized SRAM.

5.6 Discussion
Prior work using the block-based cache we evaluate here
struggles on resource-constrained systems as a result of
overly-fine instrumentation demanding both a heavyweight
runtime management system and a large number of instruc-
tions inserted throughout the application. By taking advan-
tage of high-level observations about program semantics
(i.e., instructions/blocks grouped together as part of a func-
tion are likely to execute together), SwapRAM sacrifices a
small degree of precision for the ability to restrict instrumen-
tation to only function calls. Because typical software has
relatively few functions compared to basic blocks, SwapRAM
also reduces the amount of state required to maintain the
cache—saving scarce on-chip memory. While SwapRAM im-
proves performance across a variety of benchmarks, its small
impact on the AES benchmark suggests there is still a class
of applications for which the SwapRAM approach can be
improved. Our comparison of SwapRAM to the block-based
system suggests that more closely integrating program se-
mantics is a promising direction for improving performance,
motivating future extensions to SwapRAM that take advan-
tage of deeper static analysis or runtime code profiling.

6 Conclusion
Novel NVRAM technologies enable memory-intensive ap-
plications on small, ultra-low-power devices—but sacrifice
common-case performance in both execution speed and en-
ergy consumption. We design SwapRAM , a software system
that mitigates the performance penalty of NVRAM-based

operation by caching and executing application code in un-
derutilized on-chip SRAM. SwapRAM transparently inter-
poses on software execution and redirects function calls to
cached copies of user code, with an intelligent runtime sys-
tem to minimize data transfer overhead. Experiments on real
hardware show that SwapRAM increases execution speed by
an average 26% while decreasing total energy consumption
by 24% across a diverse set of benchmarks, eliminating the
NVRAM performance bottleneck with a transparent soft-
ware update.

SwapRAM demonstrates the potential of new approaches
to general-purpose embedded system design that consider
the capabilities and limitations of new memory technologies.
These results motivate a range of future research directions
further adapting systems to best leverage emerging memo-
ries at the language, compiler, and architectural levels.

7 Acknowledgments
We thank our shepherd Peter Chen for his guidance and
the anonymous reviewers for their helpful suggestions. The
project depicted is sponsored by the Defense Advanced Re-
search Projects Agency. The content of the information does
not necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.
Approved for public release; distribution is unlimited. This
material is based upon work supported by the National Sci-
ence Foundation under Grant No. 2240744.

References
[1] Miran Alhaideri, Michael Rushanan, Denis Foo Kune, and Kevin Fu.

The Moo and Cement Shoes: Future Directions of A Practical Sense-
Control-Actuate Application, September 2013. Presented at First In-
ternational Workshop on the Swarm at the Edge of the Cloud (SEC’13
@ ESWeek), Montreal.

[2] ARM. ARM7TDMI Technical Reference Manual, November
2004. https://developer.arm.com/documentation/ddi0210/c/Memory-
Interface/About-the-memory-interface?lang=en.

[3] Jean-Luc Aufranc. Texas Instruments Announces Ultra-Low
Power MSP430 “Wolverine” MCU Series, February 2012.
https://www.cnx-software.com/2012/02/29/texas-instruments-
announces-ultra-low-power-msp430-wolverine-mcu-series/.

[4] Abu Bakar, Tousif Rahman, Rishad Shafik, Fahim Kawsar, and Alessan-
dro Montanari. Adaptive Intelligence for Batteryless Sensors Using
Software-Accelerated Tsetlin Machines. In Proceedings of the 20th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’22,
page 236–249, New York, NY, USA, 2023. Association for Computing
Machinery.

[5] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-
Hashimi, Davide Brunelli, and Luca Benini. Hibernus: Sustaining
Computation During Intermittent Supply for Energy-Harvesting Sys-
tems. IEEE Embedded Systems Letters, 7(1):15–18, 2015.

[6] Daniel Beer. Debugging Tool for MSP430 MCUs, 2022. https://github.
com/dlbeer/mspdebug.

[7] Andrea Bejarano-Carbo, Hyochan An, Kyojin Choo, Shiyu Liu,
Qirui Zhang, Dennis Sylvester, David Blaauw, and Hun-Seok Kim.
Millimeter-Scale Ultra-Low-Power Imaging System for Intelligent Edge
Monitoring. arXiv, 2022.

https://developer.arm.com/documentation/ddi0210/c/Memory-Interface/About-the-memory-interface?lang=en
https://developer.arm.com/documentation/ddi0210/c/Memory-Interface/About-the-memory-interface?lang=en
https://www.cnx-software.com/2012/02/29/texas-instruments-announces-ultra-low-power-msp430-wolverine-mcu-series/
https://www.cnx-software.com/2012/02/29/texas-instruments-announces-ultra-low-power-msp430-wolverine-mcu-series/
https://github.com/dlbeer/mspdebug
https://github.com/dlbeer/mspdebug


A Software Caching Runtime for Embedded NVRAM Systems ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[8] Juan Pablo Bello, Claudio Silva, Oded Nov, R. Luke DuBois, Anish
Arora, Justin Salamon, Charles Mydlarz, and Harish Doraiswamy.
SONYC: A System for the Monitoring, Analysis and Mitigation of
Urban Noise Pollution, 2018.

[9] George Boateng, Vivian Genaro Motti, Varun Mishra, John A. Batsis,
Josiah Hester, and David Kotz. Experience: Design, Development and
Evaluation of aWearable Device for MHealth Applications. In The 25th
Annual International Conference on Mobile Computing and Networking,
MobiCom ’19, New York, NY, USA, 2019. Association for Computing
Machinery.

[10] Yvonne Wang Bradley D. Nelson, Salil Sidharthan Karipott and
Keat Ghee Ong. Wireless Technologies for Implantable Devices. In
Sensors, Sensors, 2020.

[11] Tsai-Kan Chien, Lih-Yih Chiou, Shyh-Shyuan Sheu, Jing-Cian Lin,
Chang-Chia Lee, Tzu-Kun Ku, Ming-Jinn Tsai, and Chih-I Wu. Low-
Power MCU With Embedded ReRAM Buffers as Sensor Hub for IoT
Applications. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 6(2):247–257, 2016.

[12] D. Chiou, P. Jain, L. Rudolph, and S. Devadas. Application-
Specific Memory Management for Embedded Systems using Software-
Controlled Caches. In Proceedings 37th Design Automation Conference,
pages 416–419, 2000.

[13] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Changwoo Min, and
Changhee Jung. Write-Light Cache for Energy Harvesting Systems. In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, ISCA ’23, New York, NY, USA, 2023. Association for
Computing Machinery.

[14] Jason Cong, Karthik Gururaj, Hui Huang, Chunyue Liu, Glenn Rein-
man, and Yi Zou. An Energy-Efficient Adaptive Hybrid Cache. In
IEEE/ACM International Symposium on Low Power Electronics and De-
sign, pages 67–72, 2011.

[15] Harsh Desai, Matteo Nardello, Davide Brunelli, and Brandon Lucia.
Camaroptera: A Long-Range Image Sensor with Local Inference for
Remote Sensing Applications. ACM Trans. Embed. Comput. Syst., 21(3),
may 2022.

[16] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence
Beyond the Edge: Inference on Intermittent Embedded Systems. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, page 199–213, New York, NY, USA, 2019. Association for
Computing Machinery.

[17] GrahamGobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc,
Nathan Beckmann, and Brandon Lucia. MANIC: A Vector-DataflowAr-
chitecture for Ultra-Low-Power Embedded Systems. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’52, page 670–684, New York, NY, USA, 2019. Association
for Computing Machinery.

[18] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and
R.B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538),
pages 3–14, 2001.

[19] Matthew Hicks. Clank: Architectural Support for Intermittent Com-
putation. In International Symposium on Computer Architecture, ISCA,
pages 228–240, 2017.

[20] Matthew Hicks. MiBench2, 2023. https://github.com/
impedimentToProgress/MiBench2.

[21] Andrew P. Hill, Peter Prince, Jake L. Snaddon, C. Patrick Doncaster, and
Alex Rogers. AudioMoth: A low-cost acoustic device for monitoring
biodiversity and the environment. HardwareX, 6:e00073, 2019.

[22] Gary Hilson. Flash Wearout Drives Tesla Recall, 2021. https://www.
eetimes.com/flash-wearout-drives-tesla-recall/.

[23] Umesh Chand Jagan Singh Meena, Simon Min Sze and Tseung-Yuen
Tseng. Overview of emerging nonvolatile memory technologies.

Nanoscale Research Letters, 9:526–559, 2014.
[24] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. QUICK-

RECALL: A Low Overhead HW/SW Approach for Enabling Computa-
tions across Power Cycles in Transiently Powered Computers. In 2014
27th International Conference on VLSI Design and 2014 13th International
Conference on Embedded Systems, pages 330–335, 2014.

[25] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. Energy-
Aware Memory Mapping for Hybrid FRAM-SRAM MCUs in IoT Edge
Devices. In 2016 29th International Conference on VLSI Design and 2016
15th International Conference on Embedded Systems (VLSID), pages
264–269, 2016.

[26] Ting Liu, Christopher M. Sadler, Pei Zhang, and Margaret Martonosi.
Implementing Software on Resource-Constrained Mobile Sensors: Ex-
periences with Impala and ZebraNet. In Proceedings of the 2nd In-
ternational Conference on Mobile Systems, Applications, and Services,
MobiSys ’04, page 256–269, New York, NY, USA, 2004. Association for
Computing Machinery.

[27] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,
Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan
Narayanan. Architecture Exploration for Ambient Energy Harvesting
Nonvolatile Processors. In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pages 526–537, 2015.

[28] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent
Execution Without Checkpoints. In International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA,
pages 96:1–96:30, October 2017.

[29] Kiwan Maeng and Brandon Lucia. Adaptive Dynamic Checkpointing
for Safe Efficient Intermittent Computing. In USENIX Conference on
Operating Systems Design and Implementation, OSDI, pages 129–144,
November 2018.

[30] Andrea Maioli and Luca Mottola. ALFRED: Virtual Memory for In-
termittent Computing. In Proceedings of the 19th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’21, page 261–273, New
York, NY, USA, 2021. Association for Computing Machinery.

[31] Microchip Technology. Section 50. CPU for Devices with MIPS32
microAptiv and M-Class Cores, July 2015. https://ww1.microchip.com/
downloads/en/DeviceDoc/60001192B.pdf.

[32] Microchip Technology. Low-Power, 32-bit Cortex-M0+
MCU with Advanced Analog and PWM, December 2021.
https://ww1.microchip.com/downloads/aemDocuments/documents/
MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-
Data-Sheet-DS40001882H.pdf.

[33] Jason E. Miller and Anant Agarwal. Software-based Instruction
Caching for Embedded Processors. SIGARCH Comput. Archit. News,
34(5):293–302, oct 2006.

[34] Mouser. Texas Instruments MSP430FRx Ultra Low-Power FRAM
MCUs, 2022. https://www.mouser.com/new/texas-instruments/ti-
msp430fr-fram-mcus/.

[35] Guillaume Patrigeon, Pascal Benoit, Lionel Torres, Sophiane Senni,
Guillaume Prenat, and Gregory Di Pendina. Design and Evaluation of
a 28-nm FD-SOI STT-MRAM for Ultra-Low Power Microcontrollers.
IEEE Access, 7:58085–58093, 2019.

[36] Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexander V.
Mamishev, and Joshua R. Smith. Design of an RFID-Based Battery-Free
Programmable Sensing Platform. IEEE Transactions on Instrumentation
and Measurement, 57(11):2608–2615, 2008.

[37] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan,
and P.Marwedel. Reducing Energy Consumption byDynamic Copying
of Instructions onto Onchip Memory. In 15th International Symposium
on System Synthesis, 2002., pages 213–218, 2002.

[38] S. Steinke, L. Wehmeyer, Bo-Sik Lee, and P. Marwedel. Assigning
Program and Data Objects to Scratchpad for Energy Reduction. In
Proceedings 2002 Design, Automation and Test in Europe Conference and
Exhibition, pages 409–415, 2002.

https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/MiBench2
https://www.eetimes.com/flash-wearout-drives-tesla-recall/
https://www.eetimes.com/flash-wearout-drives-tesla-recall/
https://ww1.microchip.com/downloads/en/DeviceDoc/60001192B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/60001192B.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://www.mouser.com/new/texas-instruments/ti-msp430fr-fram-mcus/
https://www.mouser.com/new/texas-instruments/ti-msp430fr-fram-mcus/


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Harrison Williams and Matthew Hicks

[39] Robert Strenz. Review and Outlook on Embedded NVM Technologies
– From Evolution to Revolution. In 2020 IEEE International Memory
Workshop (IMW), pages 1–4, 2020.

[40] Texas Instruments. FRAM FAQs, January 2014. http://www.ti.com/lit/
ml/slat151/slat151.pdf.

[41] Texas Instruments. MSP430FR2355 LaunchPad Development Kit
(MSP--EXP430FR2355), 2018. https://www.ti.com/lit/ug/slau680/
slau680.pdf.

[42] Texas Instruments. MSP430FR698x(1), MSP430FR598x(1) Mixed-
Signal Microcontrollers, 2018. http://www.ti.com/lit/ds/symlink/
msp430fr6989.pdf.

[43] Texas Instruments. MSP430FR235x, MSP430FR215x Mixed-Signal Mi-
crocontrollers, 2019. https://www.ti.com/lit/ds/symlink/msp430fr2355.
pdf.

[44] Texas Instruments. MSP430 GCC Toolchain, 2020. https://www.ti.
com/lit/ug/slau646f/slau646f.pdf.

[45] Texas Instruments. MSP430F552x, MSP430F551x Mixed-Signal Micro-
controllers, 2020. https://www.ti.com/lit/ds/symlink/msp430f5529.pdf.

[46] Texas Instruments. Low-Power FRAM Microcontrollers and Their
Applications, September 2023. https://www.ti.com/lit/wp/slaa502a/
slaa502a.pdf.

[47] Texas Instruments. MSPM0L130x Mixed-Signal Microcontrollers, 2023.
https://www.ti.com/lit/ds/symlink/mspm0l1306.pdf.

[48] Harrison Williams, Xun Jian, and Matthew Hicks. Forget Failure: Ex-
ploiting SRAM Data Remanence for Low-Overhead Intermittent Com-
putation. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’20, page 69–84, New York, NY, USA, 2020. Association
for Computing Machinery.

[49] Joel Van Der Woude and Matthew Hicks. Intermittent Computation
without Hardware Support or Programmer Intervention. In USENIX
Symposium on Operating Systems Design and Implementation, OSDI,
pages 17–32, November 2016.

[50] Ozan Yigit. Hash Functions, 2006. http://www.cse.yorku.ca/~oz/hash.
html.

http://www.ti.com/lit/ml/slat151/slat151.pdf
http://www.ti.com/lit/ml/slat151/slat151.pdf
https://www.ti.com/lit/ug/slau680/slau680.pdf
https://www.ti.com/lit/ug/slau680/slau680.pdf
http://www.ti.com/lit/ds/symlink/msp430fr6989.pdf
http://www.ti.com/lit/ds/symlink/msp430fr6989.pdf
https://www.ti.com/lit/ds/symlink/msp430fr2355.pdf
https://www.ti.com/lit/ds/symlink/msp430fr2355.pdf
https://www.ti.com/lit/ug/slau646f/slau646f.pdf
https://www.ti.com/lit/ug/slau646f/slau646f.pdf
https://www.ti.com/lit/ds/symlink/msp430f5529.pdf
https://www.ti.com/lit/wp/slaa502a/slaa502a.pdf
https://www.ti.com/lit/wp/slaa502a/slaa502a.pdf
https://www.ti.com/lit/ds/symlink/mspm0l1306.pdf
http://www.cse.yorku.ca/~oz/hash.html
http://www.cse.yorku.ca/~oz/hash.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Embedded Memory and Software Organization
	2.2 NVRAM as Unified Memory
	2.3 Software Caching Techniques
	2.4 Memory Access Patterns

	3 Design
	3.1 SwapRAM Overview and Interface
	3.2 Dynamic Function Redirection
	3.3 Cache Miss Handler
	3.4 Cache Memory Structure

	4 Implementation
	5 Evaluation
	5.1 SwapRAM Maintains Program Flow
	5.2 Binary Size and Memory Usage
	5.3 SwapRAM Eliminates NVRAM Accesses
	5.4 SwapRAM Energy and Runtime Performance
	5.5 Split SRAM Execution
	5.6 Discussion

	6 Conclusion
	7 Acknowledgments
	References

