
A Survey of Prototyping Platforms for Intermittent Computing
Research

Harrison Williams
Virginia Tech

Blacksburg, Virginia, USA
hrwill@vt.edu

Matthew Hicks
Virginia Tech

Blacksburg, Virginia, USA
mdhicks2@vt.edu

Abstract
Batteryless energy harvesting platforms are gaining popularity as
a way to bring next-generation sensing and edge computing de-
vices to deployments previously limited by their need for batteries.
Energy harvesting enables perpetual, maintenance-free operation,
but also introduces new challenges associated with unreliable envi-
ronmental power as systems face common-case, yet unpredictable
power failures. Software execution on these devices is an active
area of research: intermittently executed software must correctly
and efficiently handle arbitrary interruption, frequent state sav-
ing/restoration, and re-execution of certain code segments as part
of a normal operation. The wide application range for batteryless
systems combined with strict limitations on size and performance
means there is little overlap in batteryless system prototypes—
platforms are chosen for familiarity or specific features in a given
application. Unfortunately, the effectiveness of different intermit-
tent computing approaches varies widely across devices. As a result,
intermittent computing research is at best hard to generalize across
platforms and at worst contradictory across studies.

This work explores several of the device-level differences that
substantially affect intermittent system performance across eight
low-power prototyping platforms. We examine system-level as-
sumptions made by the major approaches to intermittent comput-
ing today and determine how compatible each approach is with
each platform. The goal of this paper is to serve as a guide for re-
searchers and practitioners developing intermittent systems to both
understand the landscape of devices suitable for batteryless oper-
ation and to highlight how interactions between devices and the
intermittent software running on them can profoundly affect both
performance and high-level conclusions in intermittent systems
research. We open source our device bring-up code and instructions
to facilitate multi-board experiments for future approaches.

CCS Concepts
• Computer systems organization → Embedded systems; Sen-
sor networks; • Hardware→ Wireless devices.

Keywords
Energy harvesting, intermittent computing, prototyping

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ENSsys ’24, November 4–7, 2024, Hangzhou, China
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1296-8/24/11
https://doi.org/10.1145/3698384.3699612

ACM Reference Format:
Harrison Williams and Matthew Hicks. 2024. A Survey of Prototyping Plat-
forms for Intermittent Computing Research. In International Workshop on
Energy Harvesting and Energy-Neutral Sensing Systems (ENSsys ’24), No-
vember 4–7, 2024, Hangzhou, China. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3698384.3699612

1 Introduction
The Internet-of-Things (IoT) is projected to expand to over 25 bil-
lion connected devices by 2030—the majority of which will be
tiny, resource-limited sensor nodes [2]. Beyond massive-scale IoT
networks, low-power embedded systems are increasingly being
deployed for sensing and actuation in remote or otherwise inacces-
sible environments (e.g., in space [9, 10] or as medical implants [41]).
Large-scale networks and extreme environments place unique de-
mands on the systems operating within them. One central challenge
is the need to operate without a conventional power source (i.e., a
battery): the lifetime, maintenance, and deployability concerns of
batteries make them a non-starter in many of the most promising
next-generation applications.

A promising solution to the challenge of power delivery is energy
harvesting: scavenging ambient energy directly from the environ-
ment to power bursts of operation using a solar panel, rectenna,
or other appropriate harvesting circuit combined with a capaci-
tor for short-term energy storage. Batteryless energy harvesting
platforms allow practitioners to deploy powerful sensors and em-
bedded processors untethered by traditional power supplies and
have seen success in deployments such as environmental sensing
and medical monitoring [1, 33, 41]. While energy harvesters can be
built cheaper, run for longer, and operate in harsher environments
than their battery-powered counterparts, the scarce and unreli-
able nature of environmental power introduces new challenges
that must be overcome before energy harvesting enters the “main-
stream” of mobile/IoT system design. The disparity between power
input and consumption—most embedded devices still consume sig-
nificantly more power than suitable energy harvesters currently
supply—poses challenges for both hardware and software design, as
systems must remain performant and correct in the face of frequent,
unpredictable-yet-common-case power failure. Frequent power fail-
ures combined with general energy scarcity and unpredictability
have introduced a variety of challenges not present on traditional
energy-constrained (i.e., battery-powered) platforms.

Accordingly, energy harvesting and intermittent operation are
active areas of research spanning the systems, architecture, and
devices communities. Unfortunately, the field’s broad range of po-
tential applications combined with stringent energy/performance
requirements means that batteryless prototypes are typically built

https://doi.org/10.1145/3698384.3699612
https://doi.org/10.1145/3698384.3699612

ENSsys ’24, November 4–7, 2024, Hangzhou, China Williams et al.

from the ground up to match the requirements of a specific deploy-
ment. The result is that individual studies are often poor guides for
practitioners looking to build their own batteryless systems and
that comparison across platforms is difficult, leading to different
studies drawing inconsistent conclusions about the performance of
competing intermittent computing techniques (§ 4.2). This paper
seeks to identify platform-level parameters affecting the perfor-
mance of intermittent systems, investigate their impact on different
intermittent computing techniques, and explore how they vary
across a diverse set of candidate devices for intermittent computing
prototyping. We evaluate a set of software benchmarks across a
range of energy-harvesting-class devices to demonstrate how the
choice of hardware, architecture, and software dictates both appli-
cation performance and the most effective approach to intermittent
computation for a given platform. To support rapid prototyping for
both future research and commercial deployment efforts, we explore
a range of commercial devices available on ready-to-use develop-
ment boards and publish our testbed and results publicly at https:
//github.com/FoRTE-Research/EnergyHarvestingDeviceTestbed.

This paper makes the following three contributions:

• We identify device-level parameters that dictate the per-
formance of different intermittent computing approaches,
including microarchitecture (§ 3), analog components (§ 4.2),
and memory technology (§ 4.1).

• We quantify the performance of representative software
across platforms and explore how different implementations
and platforms fill the trade space for execution time, memory
consumption, and energy consumption (§ 3.1).

• Finally, we qualitatively compare the platforms we explore
and recommend platforms and intermittent systems for pro-
totyping applications with different requirements (§ 5).

2 Background
Energy harvesting systems face several design challenges that set
them apart from traditional battery- or mains-powered low-power
devices, in addition to the traditional size, weight, and power con-
straints of IoT-scale computation. While ongoing research efforts
continue to push down the power consumption of mobile comput-
ing platforms, today’s devices consume significantly more power
than energy harvesting circuits can supply. As a result, battery-
less systems execute intermittently, in short bursts of operation
punctuated by long recharge times as the energy harvester refills
the buffer capacitor. Batteryless systems are therefore primarily
energy-constrained: increasing efficiency increases performance by
allowing the system to run for longer. While low-power architec-
tures are valuable for batteryless systems, processor efficiency is
only one part of the story: the energy overhead of techniques to
mitigate common-case power failures affects overall efficiency, and
for developers choosing between commercial off-the-shelf devices
the most efficient core may not be part of the overall most efficient
platform for intermittent operation.

The primary challenge for effective intermittent execution is
extending long-running computation across short, unpredictable
power cycles. There is a large body of work exploring different
strategies for system-level “checkpoints”, in which all volatile state

Device Core Max Clock
(MHz)

SRAM
(KB)

NVM
(KB)

FE310-G002[13] RISC-V 320 16 32000*
Apollo3[4] Cortex-M4 96 384 1000

Apollo4 Lite[3] Cortex-M4 192 1000 2000
M2L31KIDAE[29] Cortex-M23 72 168 512
SAMD21G18[28] Cortex-M0+ 48 32 256
SAML11E16[27] Cortex-M23 32 16 64
MSP430F5529[34] MSP430X 25 8 128
MSP430FR5994[18] MSP430X 16 8 256

Table 1: Microcontrollers we evaluate as part of the testbed
repository. *Size set by external flash chip.

23.5
24.0
24.5

FE310-G002

0 200 400 600 800
Normalized Power at Highest Efficiency (μW/MHz)

0

1

2

3

 L

ow
es

t A
ct

iv
e

Po
we

r (
m

W
)

SAMD21G18

Apollo3

Apollo4 Lite

MSP430F5529
MSP430G2553MSP430FR5994SAML11E16

M2L31KIDAE

Figure 1: Comparison of operating points at maximum effi-
ciency and minimum power for candidate devices.

(e.g., software values, hardware registers) is committed to a persis-
tent store and restored to continue execution on the next power-on
period [5, 7, 20–24, 32, 38, 40]. While prior work also shows that ar-
chitectural modification is a power technique for intermittent com-
puting [12, 42], we focus on checkpointing techniques applicable to
commercially available low-power devices. Different checkpointing
strategies make different assumptions about the platform software
is running on; we explore in Section 4 how the performance and
feasibility of different checkpointing techniques depends on the
underlying hardware. Checkpointing overhead must be balanced
with common-case execution performance, binary size, and other
concerns typical of ultra-constrained low power systems.

3 Microarchitecture
As more computation is pushed to deeply embedded edge devices,
the active-mode efficiency and performance of the microcontroller
core is becoming increasingly important. Highly efficient proces-
sors are available at a range of performance points, ranging from 8-
and 16-bit processors designed for ultra-small sensing platforms to
larger ARM- and RISC-based systems suitable for higher-end de-
ployments such as small satellites. To encompass the corresponding

https://github.com/FoRTE-Research/EnergyHarvestingDeviceTestbed
https://github.com/FoRTE-Research/EnergyHarvestingDeviceTestbed

A Survey of Prototyping Platforms for Intermittent Computing Research ENSsys ’24, November 4–7, 2024, Hangzhou, China

AES256 Chacha20 RSA ECDH SHA256
TinyAES Portable8439 TinyRSA TinyECDH Gladman
Gladman Chacha-AVR Navin BSD Saddi
MbedTLS MbedTLS BearSSL MbedTLS MbedTLS

RFC7539
Table 2: Algorithms we evaluate across our device testbed.

range of potential batteryless system deployments we evaluate a
set of devices spanning this performance range, detailed in Table 1.
Each device in Table 1 targets low-power embedded operation and
is available as part of a development board for rapid evaluation.

One key trend enabling higher efficiency embedded cores is
favorable power/frequency scaling: running the low-power de-
vices in Table 1 at higher frequencies tends to increase power
efficiency, as energy consumption does not increase at the same
rate as clock frequency. For example, increasing clock frequency
on the MSP430FR5994 from 1 to 16 MHz only increases energy
consumption by a factor of ∼6.5. On battery-powered devices, these
high efficiency/high power operating modes motivate a “sprint-
to-completion” operating model where the system runs at a high
frequency to complete some workload then enters a low-power
sleep mode to conserve energy.

On batteryless systems, however, designers must consider the
overhead associated with power failure. Higher power dissipation—
regardless of efficiency—forces the system to operate at a lower
duty cycle and endure more power failures. The extra effort needed
to mitigate power failures introduces system-level overhead (e.g.,
checkpointing or re-execution of interrupted tasks) that is not well
represented in a chip-level 𝜇𝑊 /𝑀𝐻𝑧 figure. As a result, designers
of intermittent systems need to balance efficiency with absolute
power consumption to maximize overall performance.

We visualize the efficiency/minimum power trade space in Fig-
ure 1, which plots each device according to its normalized power
consumption at itsmost efficient operating point (x axis) versus its ab-
solute power consumption at its lowest power operating point (y axis).
With the notable exception of the SAML11E16, few devices offer
both low absolute active power and high energy efficiency per clock
cycle. As the impact of power failures varies with checkpointing
strategy, the optimal strategy depends on where the target device
falls on this efficiency/absolute power trade space. Approaches with
lower per-restart overhead (e.g., continuous checkpointing) are bet-
ter suited for high-efficiency/high-power devices, while those with
high per-restart overhead (e.g., just-in-time) will maximize overall
performance on a lower absolute-power device.

3.1 Software Performance
While clock rate and energy consumed per clock cycle give valu-
able insights for predicting performance and efficiency, processor
architecture and instruction set are important influences on overall
performance. Differences in architecture, software implementation,
and compiler performance mean that high-level parameters such as
clock rate and efficiency are not enough to predict the fastest/lowest
power setup for an embedded system. We explore these differences
by running a set of different implementations of cryptographic
algorithms—detailed in Table 2—on each device.

SAMD21G18Apollo3
Apollo4 Lite

FE310-G002
MSP430F5529

MSP430FR5994
SAML11E16

M2L31KIDAE
0

20

40

60

Cy
cle

s (
10

3)

Chacha20
AES256

Figure 2: Execution time (in clock cycles) of symmetric-key
encryption across devices.

SAMD21G18Apollo3
Apollo4 Lite

FE310-G002
MSP430F5529

MSP430FR5994
SAML11E16

M2L31KIDAE
0.00

0.01

0.02

0.03

En
er

gy
 (m

J)

0.5

1.0 Chacha20
AES256

Figure 3: Energy consumption of symmetric-key encryption
across devices.

We compare the overall execution time, energy consumption,
and binary size of each algorithm on each device to determine the
“best in class” combination of software and hardware for a given
application. No single architecture, algorithm, or implementation
is best: to illustrate, we plot the runtime of the fastest-running
symmetric-key encryption implementations on each platform in
Figure 2. The fastest algorithm across the eight devices is evenly
split: AES is faster on four of our test devices, while Chacha20
is faster on the other four. Comparing these values to the energy
consumption (Figure 3) of an iteration of each algorithm across
devices demonstrates both inter- and intra-device changes: for ex-
ample, the Apollo3 completes both encryptions significantly faster
than the SAMD21G18, but consumes significantly more energy
on AES. On the MSP430F5529, AES takes significantly longer to
complete but ultimately consumes less energy than ChaCha20. In
the highly-constrained, single-application deployments typical of
energy harvesting platforms, datasheet power numbers are insuffi-
cient: developers must consider the interactions between software
and the architecture it runs on. Optimizing for other constraints
reveals additional tradeoffs; for example, the AES and ChaCha20
binaries on the MSP430F5529 consume significantly less NVM than
on the other platforms.

ENSsys ’24, November 4–7, 2024, Hangzhou, China Williams et al.

4 Checkpointing Support
Power and size constraints limit the amount of energy batteryless
systems can buffer for a single operating period, forcing software to
execute in short bursts separated by power cycles. Extending long-
running operations across power cycles requires preserving volatile
state to a persistent store in the form of a checkpoint, from which
the system can restart after a power failure and eventually complete
arbitrarily long-running processes. Broadly, several approaches to
checkpointing exist—each of which makes different assumptions
and demands of the underlying system:

Just-In-Time (JIT) checkpointing systems [5, 24, 32, 38] monitor
the supply voltage on the buffer capacitor and store a copy of all
volatile state in Non-Volatile Memory (NVM) when a drop in sup-
ply voltage indicates the system will soon lose power. JIT systems
minimize software overhead because software runs unmodified
until power loss; one checkpoint is taken per power failure, and
only the minimal set of data needed to correctly continue execu-
tion is committed to NVM. However, JIT systems realize this low
software overhead at the cost of strong hardware assumptions: the
system must include analog voltage monitoring components (e.g.,
an analog-to-digital converter or voltage comparator). While many
energy-harvesting-class devices use mixed-signal processes and
include analog measurement components, we explore in Section 4.2
how the power consumption of these integrated components often
considerably reduces overall energy efficiency.

Task-based approaches [7, 21, 22, 37] eliminate the need for
hardware voltage monitoring by instead requiring programmers
to refactor code into self-contained tasks; a purpose-built compiler
inserts code to checkpoint volatile state between tasks, “locking
in” progress at the end of each task. A task management runtime
rolls back partially updated state from an interrupted task before
re-executing it to maintain correctness when code accesses NVM
as part of its normal execution [31]. Software written for these
systems is naturally resilient to power failures and guaranteed
to make forward progress as long as each task is small enough
to complete in a single power cycle. Checkpoints in task-based
systems are more frequent but smaller than JIT systems because
post-task checkpoints only need to update global state that the
prior task actually changed. Task-based systems trade increased
software overhead—checkpoints are recorded to NVM on every
task transition, regardless of energy conditions—in exchange for
avoiding voltage monitoring components.

Automatic techniques [20, 23, 40] eliminate the need for hard-
ware support or programmer intervention using compile-time anal-
ysis to back up state to NVM throughout execution. Automatic
compiler-based systems place small, frequent checkpoints based on
different metrics: Ratchet and WARio [20, 40] insert checkpoints
as necessary to split non-idempotent memory accesses (i.e., code
segments which have different effects on global state depending
on the number of times they execute) to reduce rollback overhead
when the system loses power. Chinchilla [23] checkpoints at the
granularity of basic blocks and explicitly rolls back uncheckpointed
non-idempotent accesses after a power failure.

Automatic systems combine the advantages of task-based and
JIT approaches: like task-based systems, they eliminate the need for

potentially-expensive hardware support. Like JIT techniques, auto-
matic systems do not require the programmer to refactor code—an
important consideration for large code bases or applications where
the specific source code implementation is important (e.g., certi-
fied cryptographic libraries). The primary limitation of automatic
techniques is instead that their execution models depend on non-
volatile main memory. Compared to JIT and task-based systems,
automatic approaches take far more frequent (but smaller) check-
points and reduce checkpointing overhead by maintaining runtime
state in non-volatile main memory. As the access overhead asso-
ciated with off-chip NVM would dramatically increase the cost of
frequent checkpointing, automatic approaches target devices with
high-performance on-chip NVM. Unfortunately, few commercially
available systems with suitable NVM are available today, limiting
the applicability of automatic hardware-free techniques (§5).

4.1 Memory Considerations
Intermittent systems’ dependence on frequently checkpointing
volatile state to a persistent store means that NVM is on the “critical
path” of overall system performance. For developers limited to
commercial devices, NVM is intrinsically tied to other on-chip
components (e.g., architecture, analog features, etc.) depending on
the devices available from vendors. Table 3 shows the on-chip NVM
type for our evaluated set of systems.

Four of the eight devices we evaluate use flash as their on-chip
NVM. The prevalence of flash memory represents a hurdle for inter-
mittent systems using commercial platforms: flash is mature, inex-
pensive, and easy to integrate onto microcontroller dies—strongly
incentivizing vendors to choose flash for NVM on standard low-
power systems which use NVM primarily for code storage. Un-
fortunately, the energy-intensive and endurance-limited nature of
flash writes makes flash particularly poorly suited for intermittent
computation. Even at low rates of checkpointing using JIT systems,
typical intermittent systems exhaust a flash memory’s endurance
in a matter of days to weeks [17]. As a result, research prototypes
and deployed intermittent systems depend on new types of NVM.

Several emerging memories are available commercially on low-
powermicrocontrollers, often referred to collectively as Non-Volatile
Random Access Memory (NVRAM). Three such technologies have
so far been integrated into energy-harvesting-class devices: Resis-
tive RAM (RRAM) [6], Spin-Transfer Torque Magnetoresistive RAM
(STT-MRAM) [30], and Ferroelectric RAM (FRAM) [35]. Each of
these technologies significantly reduces write overhead and elimi-
nates the endurance problems associated with flash, making them
suitable for the NVM-intensive access patterns required of inter-
mittent computing.

Unfortunately, the relative immaturity of these technologies
introduces tradeoffs developers must consider when designing an
intermittent system. Improving checkpointing performance using
integrated NVRAM comes at a tradeoff of common-case execution
performance because current NVRAMs significantly underperform
flash memory during read-intensive operations [26, 36]. Systems
combining different NVM technologies, such as using integrated
flash for code storage/execution in conjunction with an external
NVRAM chip for checkpoints, are a promising option for systems
that experience relatively infrequent power failures.

A Survey of Prototyping Platforms for Intermittent Computing Research ENSsys ’24, November 4–7, 2024, Hangzhou, China

Beyond pure performance concerns, the relative rarity of NVRAM-
based embedded systems means a system containing some desirable
on-chip feature such as a specific processor or peripheral devicemay
not be available with integrated NVRAM. In these cases, developers
are limited to low-checkpoint-rate JIT or task-based approaches
using discrete NVRAM chips [8]. Higher-end devices such as the
FE310 [13] offer one possible solution through a Quad SPI (QSPI)
memory mapped interface, which allows software to access ex-
ternal memory devices similarly to internal on-chip memory. As
discrete NVRAM chips supporting QSPI are available [14], this is a
promising approach to bringing automatic techniques to platforms
where the increased board size/cost is not prohibitive.

An alternative line of research targets systems where NVRAM
is not available and instead explores retaining program state using
time-dependent non-volatility in SRAM, the standard volatile mem-
ory technology for low-power embedded systems [37, 38]. These
systems take advantage of the fact that SRAM’s typical data re-
tention voltage is well below the minimum operating voltage of
the entire microcontroller (∼400 mV versus 1.8V in many cases),
resulting in a scenario following a power failure where software
cannot execute but SRAM is functionally non-volatile for minutes
to hours as leakage slowly brings the system supply voltage down
from the software brown-out voltage to SRAM’s data retention volt-
age. TotalRecall [38] uses SRAM’s time-dependent non-volatility in
the context of a JIT checkpointing system by calculating a check-
sum over all volatile state in SRAM before a power failure, storing
checkpointed data "in-place" in SRAM and verifying its integrity on
recovery using the checksum. Camel [37] extends this approach to
the task-based model by logically splitting the SRAM into volatile
and non-volatile "worlds", placingworking data in the volatile world
and writing inter-task checkpoints to the non-volatile world.

SRAM-based approaches bring intermittent computing to sys-
tems without high-performance NVM but introduce their own set
of associated limitations. No fully automatic, compiler-only inter-
mittent computing system exists, limiting current SRAM-based
systems to the JIT or task-based models. On a hardware level, using
SRAM to store data across power cycles requires SRAM’s supply
voltage rail to be unregulated. This is because the linear regula-
tors integrated into low-power microcontrollers typically explicitly
drive their output voltage low when their input voltage falls below
the system’s minimum to prevent a reverse current condition. As
a result, SRAM’s supply rail is driven to 0 as soon as the device’s
input voltage falls below the minimum for software operation—
preventing SRAM from retaining state across power failures.

Table 3 illustrates which of the devices we evaluate includes an
internal regulator that would interfere with SRAM-based check-
pointing. With the exception of the FE310-G002, none of the devices
we test are compatible with SRAM-based intermittent computation
without hardware modification. Broadly, we expect SRAM-based
intermittent computing to be a better fit for devices outside the
mid-range systems we focus on here. Higher end devices such as
the FE310 require a regulated core voltage but save die space for
better core performance by requiring designers to include an ex-
ternal regulator, allowing users to add capacitance directly to the
supply rail to extend SRAM’s data retention. Lower end, cheaper
devices using older technology nodes (e.g., the MSP430G2553 [16])
do not require the core voltage to be regulated.

Current (𝜇𝐴)

Device Core Comp. ADC NVM
Type

SRAM
Regulated?

FE310-G002 8000 N/A N/A QSPI
External No

Apollo3 494 10 300 Flash Yes
Apollo4 Lite 1100 10 300 MRAM Yes
M2L31KIDAE 660 70 400 RRAM Yes
SAMD21G18 184 16 1250 Flash Yes
SAML11E16 146 6 150 Flash Yes
MSP430F5529 360 70 220 Flash Yes
MSP430FR5994 220 150 230 Flash Yes

Table 3: Device-level parameters that influence checkpoint-
ing performance. Comparator and ADC current include in-
ternal voltage reference generation.

4.2 Analog Components
Many of the devices best suited for energy harvesting applications
are mixed-signal systems originally designed for battery-powered
sensing deployments. As a result, they include sensing compo-
nents useful for energy harvesters such as voltage comparators
and Analog-to-Digital Converters (ADCs) which allow software
to measure supply voltage and estimate energy remaining before
power failure. Voltage supervision is both a necessary component
of JIT checkpointing and a valuable tool for batteryless operation
in general, as software can use knowledge of energy conditions
to schedule tasks or modulate performance according to incom-
ing/buffered energy [11, 25, 39].

Integrated analog components save cost and board space but
come with their own set of drawbacks. On-chip comparators and
ADCs tend to underperform their discrete counterparts in both per-
formance and energy consumption due to cost and size constraints.
Combined with the superior downscaling of digital circuitry com-
pared to analog components [39], voltage supervision on commer-
cial low-power devices tends to represent a significant portion of
overall power consumption. We detail the current consumption
of the on-chip comparator and ADC, compared to the minimum
active-mode current consumption of the digital core for context,
for our testbed devices in Table 3. For each device, the on-chip
comparator draws several orders of magnitude more power than a
comparable discrete device [19]. In the case of the MSP430FR5994,
the comparator and internal bandgap voltage reference combined
can draw more power than the entire active-mode consumption of
the digital core (depending on cache hit rates) [18].

The power consumption of integrated components is a crucial
consideration when prototyping batteryless systems because it af-
fects the high-level conclusions drawn from experiments on those
systems. For example, the study describing Samoyed [24] compares
the overall performance of JIT and task-based checkpointing and
concludes that JIT approaches typically reduce end-to-end overhead
compared to task-based ones owing to high checkpointing over-
head in task-based systems. As the software overhead of task-based
approaches falls, however, the performance gap has closed enough
that analog components’ power consumption must be considered.
Camel—the state of the art task-based system [37]—reduces over-
head over prior works by a factor of 2, and the authors demonstrate

ENSsys ’24, November 4–7, 2024, Hangzhou, China Williams et al.

Device JIT Automatic Task-based
FE310-G002
Apollo3

Apollo4 Lite
M2L31KIDAE
SAMD21G18
SAML11E16
MSP430F5529
MSP430FR5994

Table 4: Compatibility of commercial devices with different
intermittent computing approaches. Symbols: None,
Some, Strong.

that it significantly outperforms JIT approaches on a typical low-
power device [15] when low-power discrete analog components
are not an option. Both researchers and industrial developers of
energy harvesting systems should consider the implications and re-
quirements of different intermittent systems and how they interact
with prototyping platforms.

5 Prototyping Recommendations and
Challenges

The unique demands of intermittent operation, variability across
both checkpointing systems and hardware platforms, and ad hoc na-
ture of many existing studies makes choosing the best platform for
intermittent systems development difficult. To serve as a guide for
researchers and developers, we classify each device in our testbed
as having no, some, or strong compatibility with each intermit-
tent computing approach in Table 4. Our focus is on combining
ease of prototyping with overall performance. We classify a hard-
ware/software combination of systems as having:

• Strong compatibility if the hardware can be used without
modification (i.e., development board only) and at typically
low overhead

• Some compatibility if the hardware can be used unmodified
with a given system at a performance penalty or would
require only minor modification

• No compatibility if the system combination is infeasible or
the platform requires extensive modification.

In general, few devices are strongly compatible with every inter-
mittent computing approach. With the exception of the Apollo4,
M2L31, and MSP430FR lines of devices, each system listed requires
external NVRAM to store checkpoints of persistent state. The most
immediate consequence of this requirement is that it precludes
automatic, compiler-based checkpointing systems which depend
on small and frequent updates to NVM. The aforementioned QSPI
interface allows the FE310 partial compatibility with automatic
checkpointing systems, although extra work is required to mitigate
the possibility of power loss during a QSPI transfer. Given the po-
tential of fully-automatic, compiler-based checkpointing systems,
we consider overcoming the need for integrated NVRAM in these
approaches to be a compelling open research question.

JIT and task-based systems introduce considerably less NVM
pressure and so are more amenable to using off-chip NVRAM.

The primary limiting factor for JIT systems is the need for volt-
age supervision, which can represent a significant energy bur-
den. The Apollo3/4, M2L31KIDAE, SAMD21G18, SAML11E16, and
MSP430F5529 all contain hardware to monitor voltage with a single
bit of precision—enough for checkpointing—at a modest to low
energy cost, allowing efficient intermittent computation with a dis-
crete NVRAM as the only external component. The MSP430FR5994,
despite its integrated NVRAM, spends a significant portion of in-
coming power on voltage supervision (Table 3) when using only
integrated components and so is better suited for approaches that
totally eschew the need for voltage supervision. The FE310, fab-
ricated on a digital-only process, requires a number of additional
discrete components (e.g., a comparator and voltage reference in
addition to an NVRAM chip) for JIT operation.

Task-based approaches minimize the hardware barrier to entry
for intermittent computing: they do not require NVRAM main
memory or voltage supervision. This maximizes their compatibility
with prototyping systems “out of the box”: the Apollo4, M2L31,
and MSP430FR devices are well suited for task-based operation
without modification, and the other devices would only require an
external NVRAM. The tradeoff of task-based systems is that they
shift the development burden onto the programmer: source code
must be completely refactored to a task-based model, and overall
performance depends on programmer decisions and understanding
of runtime energy dynamics. For hardware-constrained systems,
however, task-based approaches remain a feasible option.

6 Conclusion
Batteryless energy harvesting systems have the potential to revolu-
tionize IoT deployments by enabling long-lived, high-performance
sensing and computing systems in applications previously limited
by the need for batteries. Effective intermittent software execution
is a key component of a batteryless future, but the field today is
dominated by research prototypes designed and optimized for plat-
forms with specific features and performance profiles. We carry
out a high-level study exploring the device-level assumptions made
by each major intermittent computing approach and examine how
available commercial prototyping systems fit these assumptions.We
find that interactions between the intermittent computing system
and the actual device it runs on profoundly affect overall perfor-
mance: no one approach or platform is best across all scenarios,
and few commercial devices are compatible with all intermittent
support modalities. We hope our work serves both as an inspiration
for more research towards accessible, general-purpose intermittent
systems and as a guide for practitioners looking to transfer research
prototypes into deployable systems.

Acknowledgments
The project depicted is sponsored by the Defense Advanced Re-
search Projects Agency. The content of the information does not
necessarily reflect the position or the policy of the Government,
and no official endorsement should be inferred. Approved for public
release; distribution is unlimited. This material is based upon work
supported by the National Science Foundation under Grant No.
2240744.

A Survey of Prototyping Platforms for Intermittent Computing Research ENSsys ’24, November 4–7, 2024, Hangzhou, China

References
[1] Miran Alhaideri, Michael Rushanan, Denis Foo Kune, and Kevin Fu. 2013. The

Moo and Cement Shoes: Future Directions of A Practical Sense-Control-Actuate
Application. http://terraswarm.org/pubs/111.html Presented at First Interna-
tional Workshop on the Swarm at the Edge of the Cloud (SEC’13 @ ESWeek),
Montreal..

[2] allan Jay. 2024. Number of Internet of Things (IoT) Connected DevicesWorldwide
2024: Breakdowns, Growth & Predictions. https://financesonline.com/number-
of-internet-of-things-connected-devices/.

[3] Ambiq. 2023. Apollo4 Blue Lite SoC. https://www.mouser.com/datasheet/2/
1494/Apollo4_Blue_Lite_Datasheet-3317499.pdf.

[4] Ambiq. 2024. Apollo3 and Apollo3 Blue SoC. https://ambiq.com/wp-content/
uploads/2020/10/Apollo3-Blue-SoC-Datasheet.pdf.

[5] Domenico Balsamo, Alex Weddell, Geoff Merrett, Bashir Al-Hashimi, Davide
Brunelli, and Luca Benini. 2014. Hibernus: Sustaining Computation during
Intermittent Supply for Energy-Harvesting Systems. In IEEE Embedded Systems
Letters.

[6] Tsai-Kan Chien, Lih-Yih Chiou, Shyh-Shyuan Sheu, Jing-Cian Lin, Chang-Chia
Lee, Tzu-Kun Ku, Ming-Jinn Tsai, and Chih-I Wu. 2016. Low-Power MCU With
Embedded ReRAM Buffers as Sensor Hub for IoT Applications. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems 6, 2 (2016), 247–257.
https://doi.org/10.1109/JETCAS.2016.2547778

[7] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable In-
termittent Programs. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). 514–530.

[8] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. 2020.
Battery-Free Game Boy. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4,
3, Article 111 (sep 2020), 34 pages. https://doi.org/10.1145/3411839

[9] Bradley Denby, Krishna Chintalapudi, Ranveer Chandra, Brandon Lucia, and
Shadi Noghabi. 2023. Kodan: Addressing the Computational Bottleneck in Space.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 392–403. https://doi.org/10.1145/3582016.3582043

[10] Bradley Denby and Brandon Lucia. 2020. Orbital Edge Computing: Nanosatellite
Constellations as a New Class of Computer System. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 939–954. https://doi.org/10.1145/
3373376.3378473

[11] H. Desai and B. Lucia. 2020. A Power-Aware Heterogeneous Architecture Scaling
Model for Energy-Harvesting Computers. IEEE Computer Architecture Letters 19,
1 (2020), 68–71.

[12] MatthewHicks. 2017. Clank: Architectural Support for Intermittent Computation.
In International Symposium on Computer Architecture (ISCA). 228–240.

[13] SiFive Inc. 2021. SiFive FE310-G002. https://starfivetech.com/uploads/fe310-
g002-datasheet-v1p2.pdf.

[14] Infineon. 2022. 8Mb EXCELON™ Ultra Ferroelectric RAM (F-RAM).
https://www.mouser.com/datasheet/2/196/Infineon_CY15B108QSN_108BKXI_
DataSheet_v05_00_EN-3106498.pdf.

[15] Texas Instruments. 2013. MIXED SIGNAL MICROCONTROLLER. https://www.
ti.com/lit/ds/symlink/msp430g2955.pdf.

[16] Texas Instruments. 2013. MSP430G2x53, MSP430G2x13 Mixed Signal Microcon-
troller datasheet (Rev. J). http://www.ti.com/lit/ds/symlink/msp430g2553.pdf.

[17] Texas Instruments. 2018. MSP430 Flash Memory Characteristics (Rev. B). http:
//www.ti.com/lit/an/slaa334b/slaa334b.pdf.

[18] Texas Instruments. 2018. MSP430FR5964—MSP430FR599x, MSP430FR596xMixed-
Signal Microcontrollers. http://www.ti.com/lit/ds/symlink/msp430fr5964.pdf.

[19] Texas Instruments. 2018. TLV7081 Nano-Power, 4-Bump WCSP, Small-Size
Comparator. https://www.ti.com/lit/ds/symlink/tlv7081.pdf.

[20] Vito Kortbeek, Souradip Ghosh, Josiah Hester, Simone Campanoni, and Prze-
mysław Pawełczak. 2022. WARio: efficient code generation for intermittent
computing. In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation (San Diego, CA, USA)
(PLDI 2022). Association for Computing Machinery, New York, NY, USA, 777–791.
https://doi.org/10.1145/3519939.3523454

[21] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. In Conference on Programming
Language Design and Implementation (PLDI). 575–585.

[22] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent
Execution Without Checkpoints. In International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). 96:1–96:30.

[23] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Checkpointing
for Safe Efficient Intermittent Computing. In USENIX Conference on Operating
Systems Design and Implementation (OSDI). 129–144.

[24] Kiwan Maeng and Brandon Lucia. 2019. Supporting Peripherals in Intermittent
Systems with Just-in-time Checkpoints. In SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). 1101–1116.
[25] Kiwan Maeng and Brandon Lucia. 2020. Adaptive Low-Overhead Scheduling for

Periodic and Reactive Intermittent Execution. In Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Implementation (London,
UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,
1005–1021. https://doi.org/10.1145/3385412.3385998

[26] Andrea Maioli and Luca Mottola. 2021. ALFRED: Virtual Memory for Intermittent
Computing. In Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems (Coimbra, Portugal) (SenSys ’21). Association for Computing Ma-
chinery, New York, NY, USA, 261–273. https://doi.org/10.1145/3485730.3485949

[27] Microchip. 2019. Ultra Low-Power, 32-bit Cortex-M23 MCUs with TrustZone,
Crypto, and Enhanced PTC. https://ww1.microchip.com/downloads/en/
DeviceDoc/SAM-L10L11-Family-DataSheet-DS60001513F.pdf.

[28] Microchip. 2021. SAM D21/DA1 Family. https://ww1.microchip.com/downloads/
aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-
DA1-Family-Data-Sheet-DS40001882H.pdf.

[29] Nuvoton. 2024. M2L31 Series Datasheet. https://www.nuvoton.com/export/
resource-files/en-us--DS_M2L31_Series_EN_Rev1.00.pdf.

[30] Guillaume Patrigeon, Pascal Benoit, Lionel Torres, Sophiane Senni, Guillaume
Prenat, and Gregory Di Pendina. 2019. Design and Evaluation of a 28-nm FD-
SOI STT-MRAM for Ultra-Low Power Microcontrollers. IEEE Access 7 (2019),
58085–58093. https://doi.org/10.1109/ACCESS.2019.2906942

[31] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile Memory is a Broken
Time Machine. InWorkshop on Memory Systems Performance and Correctness.

[32] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support
for Long-Running Computation on RFID-Scale Devices. In Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[33] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. 2008.
Design of an RFID-Based Battery-Free Programmable Sensing Platform. IEEE
Transactions on Instrumentation and Measurement 57, 11 (Nov 2008), 2608–2615.

[34] Texas Instruments. 2020. MSP430F552x, MSP430F551x Mixed-Signal Microcon-
trollers. https://www.ti.com/lit/ds/symlink/msp430f5529.pdf.

[35] Texas Instruments. 2023. Low-Power FRAM Microcontrollers and Their Applica-
tions. https://www.ti.com/lit/wp/slaa502a/slaa502a.pdf.

[36] Harrison Williams, , and Matthew Hicks. 2025. A Software Caching Runtime for
Embedded NVRAM Systems. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[37] Harrison Williams, Saim Ahmad, and Matthew Hicks. 2024. A Difference World:
High-performance, NVM-invariant, Software-only Intermittent Computation. In
2024 USENIX Annual Technical Conference (USENIX ATC 24). USENIX Associa-
tion, Santa Clara, CA, 1223–1238. https://www.usenix.org/conference/atc24/
presentation/williams

[38] Harrison Williams, Xun Jian, and Matthew Hicks. 2020. Forget Failure: Exploit-
ing SRAM Data Remanence for Low-Overhead Intermittent Computation. In
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 69–84.

[39] Harrison Williams, Michael Moukarzel, and Matthew Hicks. 2021. Failure Sen-
tinels: Ubiquitous Just-in-Time Intermittent Computation via Low-Cost Hard-
ware Support for Voltage Monitoring. In International Symposium on Computer
Architecture (ISCA). 665–678.

[40] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation with-
out Hardware Support or Programmer Intervention. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 17–32.

[41] X. Wu, I. Lee, Q. Dong, K. Yang, D. Kim, J. Wang, Y. Peng, Y. Zhang, M. Saliganc,
M. Yasuda, K. Kumeno, F. Ohno, S. Miyoshi, M. Kawaminami, D. Sylvester, and
D. Blaauw. 2018. A 0.04MM316NW Wireless and Batteryless Sensor System
with Integrated Cortex-M0+ Processor and Optical Communication for Cellular
Temperature Measurement. In 2018 IEEE Symposium on VLSI Circuits. 191–192.

[42] Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk Choi, and Changhee Jung.
2023. SweepCache: Intermittence-Aware Cache on the Cheap. In Proceedings of
the 56th Annual IEEE/ACM International Symposium on Microarchitecture (<conf-
loc>, <city>Toronto</city>, <state>ON</state>, <country>Canada</country>,
</conf-loc>) (MICRO ’23). Association for Computing Machinery, New York, NY,
USA, 1059–1074. https://doi.org/10.1145/3613424.3623781

http://terraswarm.org/pubs/111.html
https://financesonline.com/number-of-internet-of-things-connected-devices/
https://financesonline.com/number-of-internet-of-things-connected-devices/
https://www.mouser.com/datasheet/2/1494/Apollo4_Blue_Lite_Datasheet-3317499.pdf
https://www.mouser.com/datasheet/2/1494/Apollo4_Blue_Lite_Datasheet-3317499.pdf
https://ambiq.com/wp-content/uploads/2020/10/Apollo3-Blue-SoC-Datasheet.pdf
https://ambiq.com/wp-content/uploads/2020/10/Apollo3-Blue-SoC-Datasheet.pdf
https://doi.org/10.1109/JETCAS.2016.2547778
https://doi.org/10.1145/3411839
https://doi.org/10.1145/3582016.3582043
https://doi.org/10.1145/3373376.3378473
https://doi.org/10.1145/3373376.3378473
https://starfivetech.com/uploads/fe310-g002-datasheet-v1p2.pdf
https://starfivetech.com/uploads/fe310-g002-datasheet-v1p2.pdf
https://www.mouser.com/datasheet/2/196/Infineon_CY15B108QSN_108BKXI_DataSheet_v05_00_EN-3106498.pdf
https://www.mouser.com/datasheet/2/196/Infineon_CY15B108QSN_108BKXI_DataSheet_v05_00_EN-3106498.pdf
https://www.ti.com/lit/ds/symlink/msp430g2955.pdf
https://www.ti.com/lit/ds/symlink/msp430g2955.pdf
http://www.ti.com/lit/ds/symlink/msp430g2553.pdf
http://www.ti.com/lit/an/slaa334b/slaa334b.pdf
http://www.ti.com/lit/an/slaa334b/slaa334b.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5964.pdf
https://www.ti.com/lit/ds/symlink/tlv7081.pdf
https://doi.org/10.1145/3519939.3523454
https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/3485730.3485949
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-L10L11-Family-DataSheet-DS60001513F.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-L10L11-Family-DataSheet-DS60001513F.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://www.nuvoton.com/export/resource-files/en-us--DS_M2L31_Series_EN_Rev1.00.pdf
https://www.nuvoton.com/export/resource-files/en-us--DS_M2L31_Series_EN_Rev1.00.pdf
https://doi.org/10.1109/ACCESS.2019.2906942
https://www.ti.com/lit/ds/symlink/msp430f5529.pdf
https://www.ti.com/lit/wp/slaa502a/slaa502a.pdf
https://www.usenix.org/conference/atc24/presentation/williams
https://www.usenix.org/conference/atc24/presentation/williams
https://doi.org/10.1145/3613424.3623781

	Abstract
	1 Introduction
	2 Background
	3 Microarchitecture
	3.1 Software Performance

	4 Checkpointing Support
	4.1 Memory Considerations
	4.2 Analog Components

	5 Prototyping Recommendations and Challenges
	6 Conclusion
	References

