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Processors are small
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Batteries are burdensome
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Harvesting energy from the environment
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Intermittent power means intermittent computation
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Common-case failure

- Time limit

- Correctness issues

- Energy limit



What can we do?
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Challenge: Preserve volatile state

Solution: Checkpoint to Non-Volatile Memory (NVM) before failure 
[Ransford ’11]



Memory choice determines performance
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Flash

Most common NVM

Fast reads, slow writes

Low endurance (lifespan: 1 day)

Emerging memories (FRAM)

High checkpoint performance

Lower execution performance

Limited options



Memory choice determines performance
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Static RAM (SRAM)

Highest performance

Ubiquitous

No transfer overhead

Volatile



SRAM has time-dependent volatility
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Full data retention for > 5 
minutes

Past work: ~2 second

retention with no added 

capacitor! [Rahmati ‘12]



Intermittent off times are short
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Off times ≈ on times (short)

Retention at 20° C:

- Flash: 100 years
- SRAM: 6 minutes

SRAM retention fits!

Why use NVM at all?



Some off times are long
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Long off times = predictable Long off times = irrelevant



TotalRecall
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Goals:

1. Efficiency - take advantage of common case short 

off times

2. Correctness - handle uncommon case long off 

times

Avoid all NVM-writes by taking checkpoints that 

reside entirely in SRAM.



TotalRecall checkpoints in SRAM
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Cyclic Redundancy Check (CRC)

Checkpoint

Data

(~40 bytes)

Protected by 

CRC
Simple

Fast

Hardware support



Using remanence safely
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Registers -> SRAM

CRC over SRAM

Wait...

Verify CRC

Restore 

registers

Re-init Restart



How did we evaluate it?
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Platforms

- MSP430G2553 (Flash)

- MSP430FR6989 (FRAM)

- CRC engine

Benchmarks

- DSP, math, sorting

- Benchmark-agnostic

Baseline

- One-time checkpoints to NVM



Flash: high overhead in all cases
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TotalRecall: FRAM-level performance anywhere
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Benchmarks complete in ideal time
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TotalRecall Summary
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Preserves program data using SRAM remanence - not costly NVM

Protects against data loss with a simple, quick integrity check

Outperforms state-of-the-art NVM with a software update

Result: efficient intermittent computation on any platform

https://github.com/FoRTE-Research/TotalRecall-artifact

https://github.com/FoRTE-Research/TotalRecall-artifact

