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Processors are small
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Batteries are burdensome




Harvesting energy from the environment
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Intermittent power means intermittent computation
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What can we do?
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Challenge: Preserve volatile state

Solution: Checkpoint to Non-Volatile Memory (NVM) before failure




Memory choice determines performance

Flash

= Most common NVM

¥ Fast reads, slow writes
¥ Low endurance (lifespan: 1 day)

Emerging memories (FRAM)

== High checkpoint performance
® Lower execution performance
® Limited options




Memory choice determines performance
Static RAM (SRAM)

== Highest performance
== Ubiquitous

=# No transfer overhead
® Volatile
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SRAM has time-dependent volatility

Full data retention for > 5
minutes

Past work: ~2 second
retention with no added
capacitor! [Rahmati “12]

100% Retention Time (s)

2160
2040
1920
1800
1680
1560
1440
1320
1200
1080
960
840
720
600
480
360
240
120
0

B = ma

— 10pF
4Ty

20 25 30 35 40 45 50 55 60 65 70 5 80 85

Temperature (°C)




Intermittent off times are short
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Off times = on times (short) *
42
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- Flash: 100 years £
-  SRAM: 6 minutes f\tf; @
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Why use NVM at all? ™ = 2 = a0 s s s e e 0 75 w
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Some off times are long

Long off times = predictable
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TotalRecall

Avoid all NVM-writes by taking checkpoints that
reside entirely in SRAM.

Goals:

1. Efficiency - take advantage of common case short
off times

2. Correctness - handle uncommon case long off
times
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TotalRecall checkpoints in SRAM

Cyclic Redundancy Check (CRC)
= Simple

=" Fast

== Hardware support

Protected by
CRC
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Using remanence safely
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How did we evaluate it?

Platforms

- MSP430G2553 (Flash)

- MSP430FR6989 (FRAM)
- CRC engine

Benchmarks
- DSP, math, sorting
- Benchmark-agnostic

Baseline
- One-time checkpoints to NVM
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Flash: high overhead in all cases
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TotalRecall: FRAM-level performance anywhere
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Benchmarks complete in ideal time
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TotalRecall Summary

/ Preserves program data using SRAM remanence - not costly NVM
/ Protects against data loss with a simple, quick integrity check

/ Outperforms state-of-the-art NVM with a software update
/ Result: efficient intermittent computation on any platform

https://qgithub.com/FoORTE-Research/TotalRecall-artifact
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https://github.com/FoRTE-Research/TotalRecall-artifact

