
Forget Failure:
Exploiting SRAM Data Remanence for

Low-overhead Intermittent Computation

1

Matthew Hicks

mdhicks2@vt.edu

Harrison Williams

hrwill@vt.edu

Xun (Steve) Jian

xunj@vt.edu



Processors are small

2



Batteries are burdensome

3



Harvesting energy from the environment

4



Intermittent power means intermittent computation

5

Common-case failure

- Time limit

- Correctness issues

- Energy limit



What can we do?

6

Challenge: Preserve volatile state

Solution: Checkpoint to Non-Volatile Memory (NVM) before failure 
[Ransford ’11]



Memory choice determines performance

7

Flash

Most common NVM

Fast reads, slow writes

Low endurance (lifespan: 1 day)

Emerging memories (FRAM)

High checkpoint performance

Lower execution performance

Limited options



Memory choice determines performance

8

Static RAM (SRAM)

Highest performance

Ubiquitous

No transfer overhead

Volatile



SRAM has time-dependent volatility

9

Full data retention for > 5 
minutes

Past work: ~2 second

retention with no added 

capacitor! [Rahmati ‘12]



Intermittent off times are short

10

Off times ≈ on times (short)

Retention at 20° C:

- Flash: 100 years
- SRAM: 6 minutes

SRAM retention fits!

Why use NVM at all?



Some off times are long

11

Long off times = predictable Long off times = irrelevant



TotalRecall

12

Goals:

1. Efficiency - take advantage of common case short 

off times

2. Correctness - handle uncommon case long off 

times

Avoid all NVM-writes by taking checkpoints that 

reside entirely in SRAM.



TotalRecall checkpoints in SRAM

13

Cyclic Redundancy Check (CRC)

Checkpoint

Data

(~40 bytes)

Protected by 

CRC
Simple

Fast

Hardware support



Using remanence safely

14

Registers -> SRAM

CRC over SRAM

Wait...

Verify CRC

Restore 

registers

Re-init Restart



How did we evaluate it?

15

Platforms

- MSP430G2553 (Flash)

- MSP430FR6989 (FRAM)

- CRC engine

Benchmarks

- DSP, math, sorting

- Benchmark-agnostic

Baseline

- One-time checkpoints to NVM



Flash: high overhead in all cases

16



TotalRecall: FRAM-level performance anywhere

17



Benchmarks complete in ideal time

18



TotalRecall Summary

19

Preserves program data using SRAM remanence - not costly NVM

Protects against data loss with a simple, quick integrity check

Outperforms state-of-the-art NVM with a software update

Result: efficient intermittent computation on any platform

https://github.com/FoRTE-Research/TotalRecall-artifact

https://github.com/FoRTE-Research/TotalRecall-artifact

