Forget Failure:

Exploiting SRAM Data Remanence for
Low-overhead Intermittent Computation

Harrison Williams Xun (Steve) Jian Matthew Hicks
hrwill@vt.edu Xunj@vt.edu mdhicks2@vt.edu

\//2

COMPUTER SCIENCE

VIRGINIA TECH.

Processors are small

passive
transmitter

receiver "
active

Sensors transmitter

DSP, control

power capacitor

COMPUTER SCIENCE

VIRGINIA TECH

2 \/al

Batteries are burdensome

Harvesting energy from the environment

4 N7/~ | COMPUTER SCIENCE

Intermittent power means intermittent computation
N Vdd

Energy 1
Harvester Storage |
Capacitor

Microcontroller

'/,-\
! "y

Common-case failure poS
- Time I|m_|t | -

- Energy limit

- Correctness issues / M I\

Sensor||Sensor{|Sensor

What can we do?

Progress
Progress

Time Time

Challenge: Preserve volatile state

Solution: Checkpoint to Non-Volatile Memory (NVM) before failure

Memory choice determines performance

Flash

= Most common NVM

¥ Fast reads, slow writes
¥ Low endurance (lifespan: 1 day)

Emerging memories (FRAM)

== High checkpoint performance
® Lower execution performance
® Limited options

Memory choice determines performance
Static RAM (SRAM)

== Highest performance
== Ubiquitous

=# No transfer overhead
® Volatile

N7/~ | COMPUTER SCIENCE

SRAM has time-dependent volatility

Full data retention for > 5
minutes

Past work: ~2 second
retention with no added
capacitor! [Rahmati “12]

100% Retention Time (s)

2160
2040
1920
1800
1680
1560
1440
1320
1200
1080
960
840
720
600
480
360
240
120
0

B = ma

— 10pF
4Ty

20 25 30 35 40 45 50 55 60 65 70 5 80 85

Temperature (°C)

Intermittent off times are short

51

Off times = on times (short) *
42

v 39

@ 36

Retention at 20° C: £33

c
s 30

- Flash: 100 years £
- SRAM: 6 minutes f\tf; @

SRAM retention fits! =

? £

Why use NVM at all? ™ = 2 = a0 s s s e e 0 75 w

10 sz’ \ COMPUTER SCIENCE

IIIIIIIIIIII

Some off times are long

Long off times = predictable

11

TotalRecall

Avoid all NVM-writes by taking checkpoints that
reside entirely in SRAM.

Goals:

1. Efficiency - take advantage of common case short
off times

2. Correctness - handle uncommon case long off
times

12 W \ COMPUTER SCIENCE

\\\\\\\\\\\\

TotalRecall checkpoints in SRAM

Cyclic Redundancy Check (CRC)
= Simple

=" Fast

== Hardware support

Protected by
CRC

13

Checksum

Checkpoint Data

Program
Data

Checkpoint
Data
(~40 bytes)

COMPUTER SCIENCE

IIIIIIIIIIII

Using remanence safely
4 Verlfy SRAM

Retain

Charge Ru

Voltage

Time

14

[Registers -> SRAM 1

A 4

CRC over

~N

SRAM

[Verify CRC }

.//\x

[Restart 1

Restore

registers

How did we evaluate it?

Platforms

- MSP430G2553 (Flash)

- MSP430FR6989 (FRAM)
- CRC engine

Benchmarks
- DSP, math, sorting
- Benchmark-agnostic

Baseline
- One-time checkpoints to NVM

15

Flash: high overhead in all cases

1400%

1200%

1000%

800%

600%

Runtime overhead

400%

200%

0%

16

B Flash + Erase 300%
mm Flash
mmm SRAM SW CRC16
250%
- 200%
©
]
£
£
7]
>
o
© 150%
£
£
c
3
3
100%
I 50%
I.- [— — 0%
1 MHz 6 MHz 16 MHz
10 pF

Clock frequency and capacitor size

B Flash + Erase

mm Flash

B SRAM SW CRC16

1 MHz

6 MHz

47 uF
Clock frequency and capacitor size

\/al

16 MHz

COMPUTER SCIENCE

VIRGINIA TECH

TotalRecall: FRAM-level performance anywhere

25%

20%

15%

Runtime overhead

10%

5%

0

°
ES

17

1 MHz

s FRAM

I SRAM SW CRC16
s SRAM SW CRC32
s SRAM HW CRC16/32

6 MHz

10 pF
Clock frequency and capacitor size

16 MHz

6%

5%

4%

Runtime overhead
w
X

N
R

1%

0%

1 MHz

s FRAM
I SRAM
s SRAM
s SRAM

6 MHz

47 uF
Clock frequency and capacitor size

\/al

SW CRC16
SW CRC32
HW CRC16/32

16 MHz

COMPUTER SCIENCE

VIRGINIA TECH

Benchmarks complete in ideal time

18

7

[e)]

ul

w

Normalized power cycles to completion
N i

11

1.1 1.0
| I I I
O % %

1 MHz

6 MHz

10 uF

16 MHz

I Flash + Erase

mm SRAM
6.0
2.8
1.0 1.0 1.0
1 MHz 6 MHz 16 MHz
47 uF

TotalRecall Summary

/ Preserves program data using SRAM remanence - not costly NVM
/ Protects against data loss with a simple, quick integrity check

/ Outperforms state-of-the-art NVM with a software update
/ Result: efficient intermittent computation on any platform

https://qgithub.com/FoORTE-Research/TotalRecall-artifact

19 N7/~ | COMPUTER SCIENCE

https://github.com/FoRTE-Research/TotalRecall-artifact

