
Forget Failure: Exploiting SRAM Data Remanence for

Low-overhead Intermittent Computation

Harrison Williams
Virginia Tech

Blacksburg, Virginia
hrwill@vt.edu

Xun Jian
Virginia Tech

Blacksburg, Virginia
xunj@vt.edu

Matthew Hicks
Virginia Tech

Blacksburg, Virginia
mdhicks2@vt.edu

Abstract

Energy harvesting is a promising solution to power billions
of ultra-low-power Internet-of-Things devices to enable ubiq-
uitous computing. However, energy harvesters typically out-
put tiny amounts of energy and, therefore, cannot continu-
ously power devices; this leads to intermittent computing,
where the energy harvester periodically charges a capaci-
tor to sufficient voltage to power brief computation, until
the capacitor’s charge is drained, and the cycle repeats. To
retain program state across frequent power failures, prior
work proposes checkpointing program state to Non-Volatile
Memory (NVM) before a power failure. Unfortunately, the
most widely deployed, highest performance, and lowest cost
devices employ Flash as their NVM, but the power, time, and
endurance limitations of Flash writes are incompatible with
the frequent NVM checkpoints of intermittent computation.
The multi-year data retention of Flash is overkill for re-

taining program state across intermittent computing’s short
power-off times (e.g., <1s). We observe that even after com-
putation stops due to low voltage, charge remains in the sys-
tem; this remaining charge keeps the voltage high enough to
maintain data in SRAM—effectively making it a NVM—for
10’s of minutes post-power loss. This paper explores how
to leverage SRAM’s data remanence to boost common-case
performance and energy efficiency for Flash-based inter-
mittent computation systems. We propose TotalRecall, a
library-level, in-situ, checkpointing technique that retains
program state in SRAM and identifies when SRAM acts as
a NVM, falling back to conventional NVM checkpoints in
the rare event of long off times. Our evaluation, on real hard-
ware, using benchmarks from Texas Instruments, shows that
TotalRecall incurs overheads as low as 0.8%—up to over
350x faster than checkpointing to Flash.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378478

CCSConcepts. •Computer systems organization→Em-

bedded software; Reliability.
Keywords. Energy Harvesting, Intermittent Computation

ACM Reference Format:

Harrison Williams, Xun Jian, and Matthew Hicks. 2020. Forget
Failure: Exploiting SRAM Data Remanence for Low-overhead In-
termittent Computation. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’20), March 16–20, 2020,
Lausanne, Switzerland. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3373376.3378478

1 Introduction

As modern microcontrollers become smaller and more en-
ergy efficient, system designers are finding novel applica-
tions for these devices in a variety of areas. The advent
of wearable devices [53], RFID smart tags [54], and smart
dust [30] represents potential for designers to leverage new
low-power chips towards more ubiquitous computing and
a greatly expanded Internet-of-Things (IoT). The limiting
factor is not microcontrollers themselves, but the batteries
powering such devices—today’s battery-powered devices
are not limited in size by the density of devices on silicon,
but by energy demands dictating a battery that often makes
up the bulk of the space and cost of the product. Both the
economic and engineering feasibility of shrinking IoT and
other ubiquitous computing devices depend on foregoing
batteries.
A necessary component of a batteryless future is energy

harvesting circuits, which draw power from the environment
from sources such as RFID readers [31] or ambient vibra-
tion [49]. Many energy harvesters cannot output enough
energy to continuously power microcontrollers; they trickle
charge into a capacitor, providing enough power for brief
computation, until the capacitor empties sufficiently, and the
cycle repeats.
To enable reliable intermittent computation in the pres-

ence of frequent power failures, prior work proposes saving
program state to Non-VolatileMemory (NVM) (e.g., Flash [47]
and Ferrorelectric RAM (FRAM) [20]), preserving program
state that is otherwise lost without power. They propose
checkpointing volatile program state (e.g., registers and stack)
to NVM, either before the next power failure [1, 2, 28, 47]
or periodically at compiler-dictated points [5, 34, 37, 38, 52].

https://doi.org/10.1145/3373376.3378478
https://doi.org/10.1145/3373376.3378478
https://doi.org/10.1145/3373376.3378478

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Harrison Williams, Xun Jian, and Matthew Hicks

The most ubiquitous, highest performance, and lowest cost
NVM is Flash. Unfortunately, while many aspects of Flash
memory are great for energy harvesting systems, Flash
writes are particularly ill-suited for intermittent com-

putation. Flash writes are much slower and more energy
intensive than writes to volatile memory [51]. Additionally,
Flash’s limited write endurance results in existing check-
pointing schemes killing it in hours to a year of operation [23].
This is why recent work targets the more esoteric FRAM-
based devices despite the many advantages of Flash-based
devices [1, 2, 28, 38, 52].
We observe that Flash retains program state for years,

but intermittent computation only requires retention

during short power-off times (e.g., <1s). This paper an-
swers the question, “Is there a way to avoid paying the

price for retention guarantees that intermittent com-

putation does not benefit from?” We answer this ques-
tion affirmatively by exploiting the time-dependent volatil-
ity of Static Random-Access Memory (SRAM). The driving
observation is that when a microcontroller hits its brown-
out voltage (e.g., 1.8V) and ceases computation, significant
charge remains in the system; this remaining charge leaks
away slowly, resulting in a gradual transition from the brown-
out voltage to 0V . In a process known as data remanence,
SRAM retains its state as long as voltage is above its retention
voltage (e.g., 0.4V) [45]. Our experiments show that SRAM
retains data for almost an hour after the microcontroller
turns off (§3.2)—3000 times greater than common intermit-
tent computation off times. Thus, for the short off times

common to intermittent computing, SRAM acts as a

NVM—without Flash’s write penalties.
To demonstrate the ability of SRAM to serve as a low-

overhead NVM for intermittent computation, we design
and implement a library-level, lightweight, in-situ, one-time
checkpointing approach called TotalRecall.1 TotalRecall
checkpoints are in-situ: SRAM data remains in place, while
registers are checkpointed to SRAM. To handle worst-case
off-times that expose SRAM’s volatility, TotalRecall calcu-
lates a Cyclic Redundancy Check (CRC) over SRAM and adds
it to the in-SRAM checkpoint. Upon recovery, TotalRecall
verifies the CRC, falling back to an existing checkpoint-
ing approach in the event of a mismatch. We implement
TotalRecall on both Flash- and FRAM-based microcon-
trollers common to intermittent computation. In experiments
with benchmarks from Texas Instruments, TotalRecall
provides better-than-FRAM performance on Flash de-

vices—with over 99.999%worst-case reliability.2 TotalRecall
improves on the performance of state-of-the-art Flash-based
one-time checkpointing between 230% and 37000%.

1TotalRecall stems from SRAM’s ability to remember it’s power-on state
perfectly given short off times.
2Our experiments suggest that Flash-based checkpointing will cause Flash
writes to fail (i.e., device failure) before a silent data corruption occurs with
TotalRecall.

(a) Energy harvesting block diagram (b) Idealized supply voltage for energy
harvester microcontroller. V _min is
the minimum voltage for code execu-
tion.

Figure 1. Energy harvesting device block diagram and idealized power
supply (Vdd). In a real system, the charge/discharge rate depends on the
harvester’s yield, the microcontroller’s current draw, and the capacitor size.
The blue highlighted regions indicate when the microcontroller computes.

This paper makes four technical contributions:

• We show that SRAM data remanence can safely store
program state for stretching computation across short
power cycles; previously, it had been shown to be a
way to exfiltrate secret data [8, 9] and keep track of
time [42, 45].
• We design TotalRecall, a library-level checkpoint-
ing technique that exploits SRAM data remanence.
TotalRecall is NVM agnostic and supports existing
software without modification (beyond linking against
our library).
• We implement TotalRecall on both Flash- and FRAM-
based MSP430 microcontrollers. Our evaluation us-
ing benchmarks from Texas Instruments shows cor-
rect operation even with up to 5-minute off times.
TotalRecall boosts performance of Flash-based de-
vices up to and beyond FRAM-based systems.
• We explore the performance/reliability trade space
that TotalRecall exposes to designers for hardware
and software CRC implementations as well as 16- and
32-bit CRC implementations. Our results show that
hardware support for CRC maximizes TotalRecall’s
performance and reliability.

2 Background

Energy harvesting circuits output tiny amounts of energy
relative to the demands of even ultra-low-power microcon-
trollers [10, 21]. A popular solution is to place a capacitor
between the energy harvester and the microcontroller [41],
as illustrated in Figure 1a. The energy harvester continu-
ously pours charge into the capacitor, eventually increasing
voltage enough to turn the microcontroller on. Once compu-
tation commences, the microcontroller drains charge faster
than the harvester supplies it, causing the voltage to lower.
Eventually, the capacitor’s voltage drops below the micro-
controller’s operating voltage, forcing it to power down. This

Forget Failure: Exploiting SRAM Data Remanence for Low-overhead Intermittent Computation ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

charge/discharge cycle repeats, as shown in Figure 1b. Cor-
rectly stretching long-running computation across frequent
power cycles is known as intermittent computation. This
paper focuses on reducing the overhead of intermittent compu-
tation.

2.1 Intermittent Computation

Supporting intermittent computation requires two things: (1)
recover the program’s pre-power-cycle state and (2) ensure
the recovered program state is consistent. While meeting
these two requirements is trivial with a wholly-non-volatile
processor [36], all deployed energy harvesting platforms
present a mix of volatility. Given some volatile memory (e.g.,
registers and the stack), checkpointing fulfills the first re-
quirement by backing-up all volatile memory to NVM. Upon
recovery, the volatile memory is restored from the check-
point in NVM. Previous work shows that fulfilling the sec-
ond requirement is more challenging [46]. In cases where
execution continues post-checkpoint, a write to NVM risks
creating an inconsistency upon recovery—because the state
is not exactly as it was when the checkpoint was taken and
where execution resumes. Inconsistent recovery opens the
execution to producing semantically impossible (hence in-
correct) results.
As §7 describes, there are two classes of checkpointing

approaches, each ensuring consistent recovery in a different
way. Because the more checkpoint heavy continuous check-
pointing approaches are ill-suited for Flash devices due to its
limitations (§2.3), we focus on one-time checkpointing ap-
proaches. One-time checkpointing approaches [1, 2, 28, 47]
assume some voltage monitoring capability to detect when
the energy storage capacitor has just enough energy to write
a checkpoint before the microcontroller turns off. The mi-
crocontroller then stops computation to maintain recovery
consistency. This paper focuses on reducing the overhead of
one-time checkpointing as used in intermittent computation.

2.2 Microcontroller Memory Hierarchy

Themicrocontrollers deployed in energy harvesting devices [41,
48, 54] are scalar in-order processors. They employ a flat-
tened memory hierarchy3 consisting of two types of mem-
ory:

• StaticRandom-AccessMemory (SRAM): mainmem-
ory: holds transient program data (e.g., heap and stack).
Positives include fast reads and writes, low energy, and
byte addressable. Negatives include small size (e.g.,
512B) and volatility, i.e., it eventually loses state with-
out power.

3FRAM devices support a hierarchical memory model where SRAM acts as
a cache for FRAM [26]. This reduces volatile state to architected state. This
organization decreases checkpointing overhead, but sacrifices common-case
performance [29]. Thus, the default is a Flash-like, flattened, model.

Flash [24] FRAM [25] SRAM

NVM size 256 KB 256 KB
Cost $6.23 $6.33

SRAM 16 KB 8 KB
Max freq. 25 MHz 16 MHz
Dhrystone 8.59 ms 13.52 ms
Released 2001 2013

Read freq. 25 MHz 8 MHz > 25 MHz
Write freq. .036 MHz 8 MHz > 25 MHz
Endurance 104 1015 ∞

Min V. 2.2 V 1.8 V < .9 V [18]
Byte erase/program No Yes Yes

Table 1. Comparison of Flash and FRAM microcontrollers from Texas
Instruments, targeting the same NVM size and price point.

• Non-VolatileMemory (NVM): permanent data store:
holds stable program data (e.g., code and constants).
The positive is its large size (e.g., 256KB). Negatives
include being slower and higher energy than SRAM.
Note that different NVMs exacerbate or diminish these
trade offs.

2.3 NVM Choices

Given that checkpointing is a fundamental part of inter-
mittent computation, NVM selection greatly impacts inter-
mittent computation overhead. Commodity microcontrollers
offer two choices of NVM: either Flash or FRAM. To compare
and contrast Flash and FRAMwith respect to energy harvest-
ing, we select representative microcontrollers from a popular
online electronics distributor. We select Texas Instruments
MSP430 microcontrollers to facilitate cross-device perfor-
mance comparison and because that is the microcontroller
used by deployed energy harvesting platforms [41, 48, 54].
Since NVM size is the primary driver of cost and technology,
we fix NVM size at 256KB. From the remaining microcon-
trollers, we select the wider voltage range (1.8–3.6V) as that
enables longer on-times. From there, we limit the results to
in-stock parts available in small quantities. For each NVM
type, we select the cheapest device as the representative mi-
crocontroller. Table 1 highlights the tradeoffs between the
representative microcontrollers, along with a comparison to
SRAM.

Flash benefits: The green cells in Table 1 highlight where
Flash outperforms FRAM. The most important benefit of
Flash is its ubiquity: Flash-based MSP430s have a decade
lead over FRAM-based MSP430s. Flash devices continue to
outsell FRAM devices today as only one vendor sells FRAM-
based devices, while dozens sell Flash-based variants. For
example, the online distributor lists over 64,000 Flash-based
microcontrollers, while only 777 options exist for FRAM
variants. In addition to availability, Flash devices also have a
performance advantage over FRAM-based devices. Specifi-
cally, Flash reads are 3x faster, provide 2x the SRAM, and a
62% higher clock frequency. These individual advantages add

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Harrison Williams, Xun Jian, and Matthew Hicks

up to a 57% improvement in the Flash device’s Dhrystone
score over the FRAM device’s. Thus, while one-time check-
pointing approaches mesh well with FRAM, ignoring high-
performance solutions for Flash-based devices leaves

most current and future deployed systems unserved.

Flash drawbacks: Despite the availability and perfor-
mance advantages of Flash, it has limitations that cause
recent energy harvesting systems to move to FRAM-based
devices [38, 41, 52, 54]. Flash’s key disadvantage centers on
writes. Programming Flash (i.e., writing) is a uni-directional,
energy, and time-intensive process called hole punching. In
hole punching, you increase the voltage of a Flash cell to
force charge across a dielectric, changing the state of the cell
from a 1 to a 0. This requires a higher starting voltage (e.g.,
2.2V) and sufficient time—and energy—to pump the voltage
up to the required level (e.g., 12V). Changing any cell’s value
back to a 1 requires an erase—which only occurs at segment
granularity (e.g., 512B): updating a single word in Flash re-
quires copying the entire segment to SRAM, erasing the
segment in Flash, then writing the modified segment back to
Flash. This makes Flash writes incredibly costly as Table 1
indicates that writing alone is 200x slower than FRAM.
Another write-related problem often overlooked in pre-

vious work is Flash’s limited write endurance [23]. Each
program/erase cycle ages the Flash cell, making it harder to
program/erase in the future. This means that the frequent
checkpoints required to support intermittent computation
quickly kill Flash—taking the microcontroller with it. Thus,
it is clear that without an alternative to checkpointing to
Flash, the vast majority of microcontrollers will not support
intermittent computation and the most advanced continuous
checkpointing approaches are a non-starter. The goal of this
paper is to achieve FRAM-like checkpointing performance and
lifetime on the more ubiquitous and performant Flash-based
devices.4

3 Motivation

To enable low-overhead and long-term intermittent com-
putation on Flash-based devices, we exploit SRAM’s data
remanence to allow it to serve as a NVM. This approach
stems from two observations: (1) the off times of intermittent
computation are short5 and (2) SRAM on microcontrollers
retains data for a relatively long time. Given these observa-
tions, we see an opportunity to tradeoff unnecessarily long

4 As emerging NVM technologies mature and approach Flash-based devices
in terms of frequency, read latency, features, and availability, the whole-
memory non-volatility guarantee provided by emerging NVM technologies
is preferable to the added complexity of the mixed-volatility offered by
Flash+TotalRecall.
5While many energy harvesting devices will go long periods without power
(e.g., smart cards), we note that these long off times demarcate individual, un-
related, computations; we differentiate these workloads from those targeted
by intermittent computation. Previous work makes a similar observation
about temporal locality of results and intermittent computation [7].

Energy Source Source Max Off Time (s)

SRAM Suitable

10µF , 47µF
RF [10, 36, 47] 10 < 80°C, ✓
Thermal [36] 14 < 75°C, ✓
Piezoelectric [36, 49] 2 ✓, ✓
Solar* [10, 36] 300 < 25°C, < 55°C

Table 2. Off times in various energy harvesting systems along with the
maximum ambient temperature that affords 100% SRAM data retention.
*Solar-powered systems experience longer off times at night, but this is
(predictable) power loss—not intermittent computation. ✓ represents that
the temperature is above the device’s maximum operating temperature of
85°C.

data retention guarantees for a increase in performance and
lifespan for Flash-based intermittent computing devices.

3.1 Intermittent Off Times are Short

The first observation driving our approach is that the off
times common to intermittent computation are short. To
validate this observation we explore the off times of energy
harvesting platforms across a range of energy sources. This
task is complicated by the fact that previous work focuses on
on-times due to its reliance on the long-term data retention
guarantees of NVMs and because of the on-time’s impact
on checkpointing overhead. Fortunately, in providing on-
time data, they also provide enough data to approximate
off times. Table 2 presents a summary of the off times from
different energy sources. From this summary, we make two
observations: (1) intermittent off times tend to be of the
same magnitude as on times—i.e., short—and (2) many long
off times are predictable and incongruent with the goal of
intermittent computation due to temporal locality. Thus the
data retention guarantee of traditional NVMs is overkill for
intermittent computation.

3.2 SRAM has Time-dependent Volatility

The second observation driving our approach is that after a
system ceases computation due to power failure, the rema-
nent charge keeps the device’s voltage higher than SRAM’s
Data Retention Voltage (DRV) for some time. This is because
SRAM DRV, which is ∼0.4V [16, 43], is much lower than
the operational voltage of the microcontroller (e.g., 1.6V for
the representative MSP430s). When supply voltage falls be-
low the minimum operating voltage of the microcontroller,
the power consumption drops drastically as transistors stop
switching; power drain is now dominated by leakage current
in the MCU and surrounding circuitry. While this leakage
eventually reduces the supply voltage below the SRAM DRV,
both extrinsic (i.e., decoupling capacitors and PCB trace ca-
pacitance) and intrinsic (e.g., transistor and trace capacitance)
sources of capacitance prevent the supply voltage from drop-
ping instantaneously. The energy storage capacitor described
in §2 dominates the charge remanence effect; previous work
on SRAM remanence supports this observation [45].

Forget Failure: Exploiting SRAM Data Remanence for Low-overhead Intermittent Computation ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Figure 2. The time before the first SRAM cell in a microcontroller loses
state varies with ambient temperature and capacitor size.

To empirically determine how long the remanent charge
in microcontrollers allows SRAM to retain state after a power
failure, we perform real-system experiments using a Flash-
based MSP430. For this experiment, we first initialize all
SRAM cells to a known value, then disconnect power for
a set time, and finally, read back the SRAM data, checking
for bit flips. Because SRAM fails bi-directionally—some cells
tend to fail into a 0 state, while others fail into a 1 state—we
run two trials at each off time, writing all 1’s then all 0’s [14].
We perform a binary search to determine the maximal off
time where full SRAM state retention occurs.

Figure 2 shows the retention time of ourMSP430microcon-
troller across a range of temperatures and the two energy
storage capacitor sizes common to deployed energy har-
vesting devices [41, 48]. We vary temperature (using a Test
Equity 123H thermal chamber) and capacitance (via power
rail decoupling capacitors) as those two variables dominate
charge leakage and by extension SRAM data retention time.
To contextualize these results, we add the maximum sup-
ported temperature for a given energy source and capacitor
size combination in Table 2. In this paper, we design and

implement a system that reliably uses SRAM as a low

overhead, long lifetime, NVM for the short off times

common to intermittent computing, falling back to ex-
isting checkpointing to support longer, power off, scenarios.

4 TotalRecall Design

We design TotalRecall, an efficient checkpointing tech-
nique for intermittent computing on energy harvesting de-
vices. TotalRecall eliminates costly NVM checkpoints by
reliably retaining program state in SRAM. The pervasiveness
of SRAMmakes TotalRecall deployable regardless of NVM
technology. The library-based design of TotalRecallmakes
it deployable to current and future commercial off-the-shelf
microcontrollers, without software or hardwaremodification.
When deployed on Flash microcontrollers, TotalRecall

enables system designers to take advantage of the bene-
fits of Flash (Table 1), without its checkpointing-induced
high write/erase overheads and limited lifetime. Much of
TotalRecall follows from previous one-time checkpointing
systems [1, 2, 28, 47], except that SRAM data remains in place.
Keeping SRAM data in place creates the central challenge
that we address in this section: how does TotalRecall know
when SRAM acted as a NVM while the power was off?

4.1 Challenge: Detecting Volatility

Our experiments with SRAM remanence (§3.2) show that
SRAM acts as a NVM given normal off times, but becomes
volatile memory given sufficiently long off times. While ex-
periments show that SRAM gradually transitions from com-
pletely non-volatile to completely volatile as the time off
increases, we assume that any bit loss constitutes complete
volatility. Thus, our goal is to design a mechanism to detect
if any bit has changed during power loss. Below we explore
the SRAM volatility detection design space.

Do nothing: The highest performance, but lowest reliabil-
ity, solution is to assume SRAM retains all data. This incurs
near-zero overhead (only registers are copied to SRAM) for
off times that stay within SRAM’s non-volatile range; but
leads to program failure for unexpectedly long off times.

Canary: To add some cheap error detection, we could add
a canary value to our in-SRAM checkpoint. By checking if the
canary value changed at power on, we would know if SRAM
lost state. Unfortunately, the SRAM cells that fail first and
the direction of failure is dictated by manufacturing-time
process variation—hence each device is different [14, 15].
Thus, a canary only detects SRAM state loss—not retention.

Enrollment: A viable solution that has a low run time
overhead and is reliable is to pre-characterize devices to de-
termine where to place canary values in each device’s SRAM.
Characterization follows the same binary search procedure
of our remanence experiments (§3.2), but at a finer granu-
larity (to tease-out the specific SRAM cell that fails first).
Characterization works because SRAM cells lose state in a
predictable order that is robust against temperature and volt-
age changes [12]. We do not choose this solution because it
limits the generality of TotalRecall; otherwise, this is the
optimal solution.

Redundancy: Another approach that takes advantage of
the unique failure pattern of SRAM is dual modular redun-
dancy: duplicate all words in SRAM and after powering on,
check for disagreement. While this provides stronger reliabil-
ity guarantees than doing nothing or using canaries without
enrollment, redundancy does not provide significant guar-
antees in the face of frequent power failures. Additionally,
this approach has high memory overhead.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Harrison Williams, Xun Jian, and Matthew Hicks

10µF 47µF
Temp. (°C) 16-bit 32-bit 16-bit 32-bit

Office 20 3.7 239K 17.2 1,126K
Death Valley 55 0.8 54K 3.9 256K

Table 3. Worst-case time, in years, until a silent data corruption.

ECC:. Error Correcting Codes (ECCs) are commonly used
to protect DRAM memory. ECC is a poor fit for the bursty
errors encountered by SRAM volatility. For example, the
MSP430’s word size is 16-bits; adding a parity bit to each data
word incurs 6.25% overhead, but can only detect a single bit
flip. Upgrading to 5-bits, guarantees two-bit error detection,
but incurs a 31.15% overhead. In the average case, our design
requires 4-bits per word of detection.

Hash function: The final solution that we rule out is
employing a hash function. Using a hash function trades a
huge performance loss for near-perfect reliability. To use
a hash function, you would feed it the entire contents of
SRAM and store the resulting digest in SRAM, as part of
a checkpoint. Upon power on, you recalculate the digest
and verify against the stored digest. The likelihood that the
two digests match, but the SRAM lost state is less than 1 in
100 trillion. This reliability is overkill for the duty cycle of
intermittent computation and expensive in terms of run-time
overhead.

4.2 Our Solution: Cyclic Redundancy Checks (CRC)

Our goal is to maximize system performance without (prac-
tically) compromising data integrity. To this end, we find
a solution that handles error bursts like hash functions, is
designed with random errors in mind like ECC, but balances
performance and integrity. Ideally, we want the cheapest
solution that provides just enough data integrity. The solu-
tion that meets these requirements is a Cyclic Redundancy
Check (CRC); CRCs are simple, fast, and provide tunable
data integrity that allows system designers to trade perfor-
mance for integrity. Another benefit of CRC is that, due to
its prevalence (e.g., the WISP platform makes heavy use of
CRC [48]), many microcontrollers provide hardware support
for it.
Cyclic Redundancy Checks (CRCs) are error-detecting

codes common in many communication and data storage
applications to provide a high degree of confidence that a
data packet is error-free. To verify a data packet, the CRC
algorithm divides the data packet by a pre-determined gen-
erator polynomial using repeated shift and XOR operations.
The sender stores/transmits the data packet along with the
remainder of this division; when the data must be verified,
the message is divided by the generator polynomial again.
If the calculated remainder matches the stored remainder,
the receiver can assume with a high degree of confidence
that the message is correct. If the remainders do not match,

Algorithm 1 In-situ SRAM checkpoint routine.

1: ...Copy all CPU registers...
2: SRAM_Ptr = SRAM_BOTTOM
3: // CRC everything in SRAM but CRC value
4: while SRAM_Ptr , SRAM_TOP do

5: // Next input to CRC engine
6: CRC_Input← *SRAM_Ptr
7: SRAM_Ptr = SRAM_Ptr + 2
8: end while

9: // Save CRC result to top of SRAM
10: *SRAM_TOP← CRC_Result
11: ...Power off...

the data is assumed to be corrupted. The shift and XOR op-
erations used to calculate CRCs are simple to implement in
both software and hardware.
Besides being efficient, CRCs have high error detection

capability. A CRC is guaranteed to detect G bits of errors,
where G depends (roughly) on the bit-width of the CRC; a
16-bit CRC guarantees detection of up to three flipped bits
anywhere within the data, while a 32-bit CRC guarantees
detection of up to five flipped bits [32]. For errors corrupt-
ing more bits than these, CRCs provide probabilistic error
detection of 1/2m , wherem is the width of the CRC. Such a
multi-bit error is undetected only if the checksum of the cor-
rupted and un-corrupted data match exactly. The probability
of undetected corruption is further reduced because CRC
guarantees detection of an odd number of bit flips and there
is a 50% chance that SRAM fails in the direction of the value
stored in the cell. Assuming each power failure is just long
enough to corrupt data (see Figure 2), we calculate CRC’s ex-
pected time to first undetected corruption for several energy
storage capacitor sizes and CRC bit-widths. Table 3 presents
the results of this calculation.

4.3 TotalRecall Overview

Like previous one-time checkpointing approaches [1, 2, 28,
47], TotalRecall creates a checkpoint immediately before
power loss. TotalRecall performs all checkpointing ac-
tions in software by implementing them in an interrupt ser-
vice routine associated with an interrupt-enabled voltage
supervisor that monitors the system’s energy storage ca-
pacitor. The checkpoint contains all architected state (e.g.,
general-purpose registers) and a CRC checksum computed
from all other SRAM data. Note that the registers themselves
are implemented using SRAM, thus they may retain data
after power loss; however, TotalRecall still copies them
as part of the checkpoint for generality, as some systems
tie registers to hardware resets to ensure a known startup
state. Unlike previous one-time checkpointing approaches,
TotalRecall’s checkpoints leave program data in-place in
SRAM—eschewing costly Flash writes. After completing the
checkpoint, the microcontroller powers-off to avoid incon-
sistent recovery [1, 46].

Forget Failure: Exploiting SRAM Data Remanence for Low-overhead Intermittent Computation ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Algorithm 2 In-situ SRAM checkpoint recovery routine.

1: SRAM_Ptr = SRAM_BOTTOM
2: while SRAM_Ptr , SRAM_TOP do

3: // Next input to CRC engine
4: CRC_Input← *SRAM_Ptr
5: SRAM_Ptr = SRAM_Ptr + 2
6: end while

7:
8: if *SRAM_TOP , CRC_Result then
9: // SRAM corruption detected
10: ...restart or load NVM checkpoint...
11: end if

12:
13: ...Restore all CPU registers...
14: Restore stack pointer
15: ...execute initialization callback, if necessary...
16: Restore status register
17: Restore program counter

Upon power-on, TotalRecall’s recovery routine gets in-
voked. It first recomputes the CRC over SRAM and compares
it to the recorded checksum. In the common case when the
old and new checksums match, TotalRecall restores the
checkpointed register values from SRAM and then resumes
program execution. In the uncommon case that the check-
sums do not match, TotalRecall restarts the user program
from the beginning or from a conventional checkpoint in
NVM. While we envision more sophisticated ways of han-
dling long off times, that is not the focus of this paper.

4.4 Checkpoint Layout and Creation

TotalRecall’s checkpointing procedure stores the check-
point in a static location reserved at the top of SRAM. This
simplifies CRC processing, makes the checkpoint and restore
code more efficient, and enables TotalRecall to seamlessly
integrate with existing programs at link time. This reserved
address range is small (e.g., 40 bytes) because TotalRecall’s
checkpoint only contains register values, which are few in
number, and a checksum. To prevent the checkpoint content
from being inadvertently overwritten by the user program,
we modify the memory map used by the linker script to start
the stack just after our checkpoint location. By doing this,
TotalRecall is able to integrate with existing programs
as late as the linker. Algorithm 1 provides the details of
TotalRecall’s checkpointing routine.

4.5 Restoring from Checkpoints

On power up, TotalRecall’s recovery routine executes be-
fore any platform initialization or user code executes. Algo-
rithm 2 details TotalRecall’s recovery routine. TotalRecall
first re-calculates the checksum over SRAM (excluding the
CRC value) and compares it to the checksum stored at the
top of the in-SRAM checkpoint. When the checksums match,
TotalRecall repopulates the register file, restores the stack
pointer, and executes any peripheral initialization function

Platform MSP430G2553 MSP430FR6989

NVM Type Flash FRAM
NVM Size 16 KB 128 KB
SRAM Size 512 B 2048 B
Max Clock Frequency 16 MHz 16 MHz
CRC Engine No Yes

Table 4. Microcontrollers that we implement TotalRecall on.

that the user program registered (by writing its function
pointer to a reserved space in the checkpoint area), finally
passing control to where the program left off (by restoring
the status register and the program counter).
Checksum mismatches result from two situations: (1) no

checkpoint exists (i.e., this is the first power on event) or
(2) the data in SRAM was lost during an a unexpectedly6
long power cycle. In the first case, TotalRecall starts ex-
ecution from the beginning of the program. In the second
case, TotalRecall looks for a checkpoint in Flash, restoring
it if it exists, otherwise restarting the program.

5 TotalRecall Implementation

To validate the applicability of TotalRecall to energy har-
vesting devices and intermittent computation, we implement
and evaluate it on two Texas Instruments microcontrollers:
MSP430G2553 and MSP430FR6989. Table 4 summarizes the
relevant aspects of each device. From a high level, these de-
vices represent existing energy harvesting devices [41, 48, 54]
and cover both Flash and FRAM NVM options. From a low
level, we select these specific devices because they are avail-
able as part of development boards.

Power control board: The development boards have the
same debug interface, which enables us to use the same
power control board across both boards. We approximate
energy harvesting conditions using a custom daughter board
compatible with both MSP430 development boards, shown
in Figure 3. Testing intermittent computation systems is
difficult because energy harvesting environments are, by na-
ture, unpredictable and difficult to replicate [10]. The power
control board allows us to test TotalRecall and baseline
systems in a consistent, repeatable environment. Amicrocon-
troller on the daughter board controls a Digital-to-Analog
Converter (DAC) capable of powering the MSP430-under-
test and transistors to isolate the MSP430-under-test when
power is disconnected to better imitate energy harvesting
circuit behavior.

Baseline implementation: To serve as a baseline for our
evaluation, we implement the state-of-the-art one-time check-
pointing approach (i.e., Hibernus [1]) on both microcon-
trollers. Being one-time approaches, the systems take a check-
point when triggered by the interrupt indicating imminent
6For expected long off times (e.g., sunset with a photovoltaic), write a
checkpoint to Flash instead.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Harrison Williams, Xun Jian, and Matthew Hicks

Figure 3. The experimental setup with power-control daughter board
(top) and the MSP430G2553 Launchpad (bottom).

power loss. A checkpoint consists of writing all registers and
SRAM data to a static, reserved, location in NVM. Compare
this to TotalRecall’s checkpoints, which leave SRAM data
in place, and only copies registers.

5.1 CRC Implementation

The main question that we answer in the evaluation (§6) is
whether taking a CRC is more efficient than copying SRAM
to NVM. TotalRecall incurs near-zero data transfer over-
head because it does not access slower NVM and only needs
to copy register data (40 bytes) to SRAM. Instead, the pri-
mary source of overhead is calculating the CRC checksum of
SRAM data. We evaluate four different implementations of
the SRAM integrity check: two table-based software routines
applicable to any device, and two routines taking advantage
of hardware CRC support common to modern microcon-
trollers.

Software CRC16/32: The software CRC approach is inde-
pendent of hardware support, thus applicable to any system.
Our software CRC implementation is optimized for speed
based on a memoization of CRC divisions; platforms with
limited code space could sacrifice checkpoint and recovery
speed for reduced code size by removing the CRC table and
directly calculating the CRC remainder. Algorithm 3 shows
the software CRC16 algorithm, adapted from Texas Instru-
ments example code [22]. Not shown is a software imple-
mentation of CRC32. Software CRC32 is similar to CRC16,
but with added operations to deal with 32-bit numbers on a
16-bit microcontroller. Experiments show that CRC32 takes
roughly 1.6x the time of CRC16—but increases reliability
(Table 3).

HardwareCRC16/32: Many low-powermicrocontrollers
which transmit or receive data include hardware dedicated
to calculating CRC checksums. The programmer writes data
to the input register of the CRC engine, sequentially, until

Algorithm 3 Software CRC16 routine.

1: MASK← 0xFF00
2: CRC← 0x0
3: P_TABLE← &CRC_TABLE
4: P_SRAM← SRAM_BOTTOM
5: while P_SRAM , SRAM_TOP-2 do
6: INDEX← CRC[7:0]
7: INDEX← *P_SRAM xor INDEX
8: P_SRAM← P_SRAM + 1
9: INDEX← INDEX + INDEX
10: INDEX← INDEX + P_TABLE
11: CRC← CRC and MASK
12: CRC← *INDEX xor CRC
13: end while

14: return CRC

all data is processed; the updated checksum is available the
next CPU cycle. We implement TotalRecall using both the
CRC16 and CRC32 engines available on the MSP430FR6989
to measure the overhead improvement possible when CRC
hardware is available. Our results show that hardware accel-
eration increases checkpoint/recovery speed by 342% when
compared to the software implementation of the CRC16 and
561% compared to the software CRC32.

5.2 Additional Challenges

We encountered a number of challenges implementing our
design, primarily related to circumventing embedded system
startup routines that assume no valuable data is in SRAM
immediately after power-on. Startup routines such as crt0
(responsible for setting up the C runtime environment) make
function calls and allocate variables at the top of the stack be-
cause they run before anything else on the system. Because
the system writes checkpoints to a static location at the top
of the stack, TotalRecall must take care to avoid overwrit-
ing crt0 and other runtime data during the checkpointing
process.
Rather than re-run the runtime initialization code on ev-

ery startup (which increases checkpoint recovery overhead)
or re-instrument startup code to accomodate SRAM check-
points (which increases time to deployment because startup
routines are platform-specific), we modify the linker script
to make the space used for storing checkpoint data unavail-
able to the compiler. This reduces the total available RAM
space by the size of the checkpoint even if no checkpoints
are taken; we consider this an acceptable penalty because
register file checkpoints are small.

6 Evaluation

To validate TotalRecall’s effectiveness and compare against
the state-of-the-art one-time checkpointing approach, we
evaluate TotalRecall and Flash-based one-time checkpoint-
ing using a set of benchmarks written for the MSP430 by
Texas Instruments [17]. These benchmarks, shown in Ta-
ble 5, include common embedded system applications and

Forget Failure: Exploiting SRAM Data Remanence for Low-overhead Intermittent Computation ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Benchmark Size (B) SRAM Usage (B) Approximation?

FIR Filter 3572 254 Yes
Dhrystone 1285 474 No
Whetstone 16136 468 Yes
Quicksort 864 362 No
Factorial 1532 44 No
Matrix Mult. 1536 122 Yes

Table 5. Memory usage information for several benchmarks on the
MSP430FR6989.

CPU performance benchmarks. We also include quicksort
and factorial benchmarks to test against stack-intensive
programs. Table 5 includes the memory usage of the bench-
marks, because one potential optimization for TotalRecall
is to only compute the CRC over SRAM in use. This opti-
mization is especially useful for programs that do not use
dynamic memory. Table 5 also details which benchmarks
are amenable to approximate computing techniques as we
foresee that TotalRecall’s use of SRAM as best-effort ap-
proximate storage has potential synergy with approximate
computing systems, although we leave this line of research
for future work.

We compile all benchmarks using the open-sourceMSP430
GCC toolchain developed by Texas Instruments [27] with
-Os (optimization for size) enabled. We use the results of this
evaluation to answer the following questions:

1. Does TotalRecall correctly stretch program execu-
tion across short yet frequent power cycles?

2. Can TotalRecall detect and handle when unexpect-
edly long power cycles expose SRAM’s volatility?

3. How does TotalRecall’s run-time overhead compare
to existing one-time checkpointing approaches?

6.1 Correctness

Figure 4 shows a test of the system working in a typical en-
ergy harvesting environment. The supply voltage to the mi-
crocontroller varies as TotalRecall extends the quicksort
benchmark across five power cycles on the MSP430G2553.
Figures 4 and 5 illustrate three stages of the power failure the
microcontroller experiences; these traces are taken on hard-
ware using the Picoscope 2208B Mixed Signal Oscilloscope
(MSO) [50]. Before the device disconnects from the power
source, the supply voltage is steady at 3.3V . Immediately
after disconnecting power, the microcontroller continues
execution, but rapidly drains the energy storage capacitor
until Vdd reaches the brown-out voltage (1.5V). With the mi-
crocontroller not executing, Vdd drops slowly due to charge
leakage from the microcontroller and surrounding devel-
opment board. The rate of Vdd drop can be unpredictable
depending on the behavior of power-hungry peripherals
such as radios that share the power supply with the MCU.
Hardware-oriented solutions such as energy federation [11]
can mitigate this problem by intelligently choosing when to

Figure 4. Extending the quicksort benchmark across five power cycles.
Channel A shows supply voltage and channel B shows the status of a GPIO
pin that is driven high when the program completes with correct output.

Figure 5. MSP430G2553 Vdd decay after power is disconnected. Flash
checkpointing systems must begin writing a checkpoint well above the
minimum Flash write voltage, wasting energy. TotalRecall allows compu-
tation to continue until just before Vdd reaches the brown-out voltage and
uses the remaining energy in the system to retain SRAM state.

connect peripheral supply capacitors to the MCU power rail,
reducing their impact on SRAM remanence time. This grad-
ual drop in supply voltage allows data to remain in SRAM
as it never goes below SRAM’s data retention voltage. Thus,
in the case of Figure 4, quicksort successfully completes
execution after five power cycles. We perform similar ex-
periments with all benchmarks, validating TotalRecall’s
ability to stretch execution across frequent power cycles.
We conduct all experiments at 20°C to reduce the impact of
operating temperature variation on SRAM retention time.

What about when longer power cycles cause data loss? To
show that TotalRecall can detect and handle cases where
SRAMbecomes volatile, we create data loss by driving Vdd be-
low SRAM’s data retention voltage. This causes some SRAM
cells to lose their state. We perform variations of this exper-
iment down to 0V and by disconnecting from power for a
long time, instead of directly driving Vdd. In all cases, the
recovery routine detects the data corruption and restarts the
program from the beginning rather than continuing with
faulty data.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Harrison Williams, Xun Jian, and Matthew Hicks

Figure 6. Comparison of one-time checkpointing system overheads on platforms with different energy storage capacitor sizes and clock frequencies.
Flash+Erase represents overhead when the Flash page must be erased before writing the checkpoint; SRAM-based checkpoint systems are divided by CRC
implementation (hardware or software) and bit-width.

6.2 TotalRecall’s Overhead

Execution-time Overhead: TotalRecall correctly ex-
tends program execution across power cycles, but how does
its performance compare to state-of-the-art Flash-based check-
pointing solutions? Does it approach FRAM’s overhead? To
compare TotalRecall’s overhead to Flash- and FRAM-based
checkpointing systems, we time each checkpoint record-
ing/recovery routine on the experimental hardware setup
described in §5. Figure 6 shows these results as percentages
of the total on-time spent in the checkpointing and recovery
routines at each capacitor, frequency, and device combina-
tion. An overhead result >=100% indicates that the check-
pointing system does not support useful computation in
the given configuration, because the time needed to record
and recover is greater than the available time in a single
power cycle. In a system with a 47µF capacitor operating at
1MHz, the hardware CRC implementation of TotalRecall
extends program execution with an average overhead of 1.0%
compared to the 27% overhead of the Flash+Erase7 system
under the same conditions—a 96% reduction in overhead.
TotalRecall also scales better with clock speed, supporting

7Flash-based systems must spend time and energy to erase data. They
can do it every power cycle if there is sufficient energy (Flash+Erase)
or they devote an entire power cycle to an erase operation when there is
insufficient energy to both erase and write in a single power cycle. Thus, real
deployments of Flash-based checkpointing systems are not able to achieve
the overheads shown in Flash due to the need to eventually erase.

16MHz execution with an overhead of 0.8%, while the fixed-
time Flash write+erase incurs nearly 300% overhead. In sum-
mary, not only does TotalRecall outperform Flash-based
checkpointing, it enables intermittent computation on

a wider array of system configurations.

Checkpoint Voltage Guard Bands: In addition to faster
checkpoint and recovery routines, TotalRecall reduces
overhead by increasing the total charge available for use-
ful calculations. One-time checkpointing systems use the
concept of a voltage "guard band", which designates the min-
imum supply voltage at which the system must stop useful
calculations and begin writing the checkpoint to ensure that
the checkpoint is completely written before power is lost.
Figure 5 shows a trace of the MSP430G2553 supply volt-
age during a power failure. Flash checkpointing systems
must finish writing a checkpoint before Vdd reaches 2.2V ,
the minimum voltage required to guarantee successful Flash
writes on MSP430-family devices [19]. Because Flash writes
are slow, the Flash checkpoint routine must begin well be-
fore Vdd reaches 2.2V . For example, on similar hardware, the
Flash-based approach Mementos [47] sets the beginning of
the checkpoint guard band between 2.8V and 2.6V . Given
that the MSP430G2553 guarantees code execution between
3.6V and 1.8V , Flash checkpointing systems waste 45% to
55% of the otherwise usable charge held by the capacitor.

TotalRecall maximizes energy use because it is not lim-
ited by the 2.2V Flash write minimum supply voltage; it
exploits the microcontroller’s full voltage range. Based on

Forget Failure: Exploiting SRAM Data Remanence for Low-overhead Intermittent Computation ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

our test platform of the MSP430G2553 with the stock 11µF
capacitor running at 1MHz, we use Equation 1 to determine
that TotalRecall can delay taking a checkpoint until Vdd
reaches 1.837V . This leaves 98% of the total useful capacitor
charge available to the system for useful computation.

Vдuard = (

Checkpoint time︷︸︸︷
∆t ∗ I︸︷︷︸

Active current

/

Total capacitance︷︸︸︷
C) + Vlow︸︷︷︸

Min. voltage

(1)

TotalRecall on FRAM Platforms: FRAM and other
emerging NVM technologies such as Spin-Transfer Torque
Magnetoresistive RAM (STT-MRAM) are potential alterna-
tives to Flash on intermittent computing platforms due to
their lower write currents, higher write endurance, and lower
write latency. The state of the art for one time checkpoint-
ing systems uses FRAM-based microcontrollers that enable
NVM-based checkpoints with approximately 15-20% time
and energy overhead [1, 2]. We implement TotalRecall
on the FRAM-based MSP430FR6989 to compare its perfor-
mance to FRAM-based checkpoints. Our evaluation in Fig-
ure 6 shows that TotalRecall, with a software-based CRC
implementation, enables checkpointing performance com-
petitive with state-of-the-art FRAM checkpointing. On a sys-
tem with a 10µF capacitor operating at 1MHz, TotalRecall
using a software CRC32 implementation introduces 27.7%
overhead compared to FRAM’s 19.5% overhead. However,
TotalRecall’s capacity for hardware acceleration allows it
to outperform FRAM-based checkpoints on devices that in-
clude hardware CRC support: on the same system, but using
hardware CRC support, TotalRecall incurs 4.5% overhead—
a 77% reduction. These results highlight TotalRecall’s po-
tential for high speed, NVM-agnostic checkpoints.

6.3 TotalRecall Practical Considerations

To gauge TotalRecall’s practical impact on intermittently
executed programs, we determine the number of power cy-
cles required to complete a benchmark program running on
the MSP430G2553. We model the total active time available
as the time required to drain a capacitor from the maximum
operating voltage (3.6V) to the minimum voltage (2.2V for
Flash and 1.8V for SRAM) while drawing the typical active
mode current at the specified clock frequency. Figure 7 de-
picts the number of power cycles required to complete the
benchmark, normalized to the power cycles required if there
were no checkpointing overhead (i.e., 100% of the active time
was dedicated to running the user program). Operating at
1MHz with a 10µF capacitor, TotalRecall reduces the num-
ber of power cycles (and thus the total energy) required to
complete the benchmark by over 7x compared to Flash-based
checkpointing, while enabling intermittent computation at
higher clock speeds and with smaller energy storage capaci-
tors.

Figure 7. Power cycles required to complete the FIR benchmark normal-
ized to continuous execution. Flash+Erase represents erasing every other
power cycle.

7 Related Work

TotalRecall represents a shift in how intermittent compu-
tation systems maintain state across power cycles. All pre-
vious work, because it assumes instant loss of volatile state,
involves storing, in the form of a checkpoint, volatile state
(e.g., registers and SRAM) to non-volatile memory (e.g., Flash
and FRAM). Two classes of checkpointing approaches exist:
one-time checkpointing approaches that store all volatile
state just before power loss and continuous checkpointing
approaches that are power-failure-agnostic and make many,
smaller checkpoints that ensure consistent recovery. In this
section, we discuss the progression of advancement in each
approach class, including a look at work that extends inter-
mittent computation beyond the microcontroller.

7.1 One-time Checkpointing

Mementos [47] is the first system to tackle the problem of
stretching computation across frequent power cycles. Me-
mentos relies on periodic measurements of the system’s
energy storage capacitor, coupled with an energy model, to
estimate how much energy remains. The goal is to commit
a checkpoint just before power failure. While Mementos
works well when programs treat non-volatile memory as
read-only, follow-on work exposes state inconsistency when
programs modify non-volatile state during post-checkpoint
execution [46]. The problem is that Mementos allows for
uncheckpointed work to occur. If uncheckpointed work up-
dates both volatile and non-volatile memory, only the non-
volatile memory updates persist, creating an inconsistent
state upon recovery.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Harrison Williams, Xun Jian, and Matthew Hicks

QuickRecall [28] addresses Mementos’s correctness is-
sue by storing all program data in non-volatile memory;
effective, but expensive due to non-volatile memory’s speed
limitations. Hibernus [1, 2] solves the problem in a different
way: through the introduction of guard bands and hiberna-
tion. A guard band is a voltage threshold that represents
the amount of energy required to store the largest possible
checkpoint to non-volatile memory in the worst-case device
and environmental conditions. Execution occurs only when
voltage is above the guardband threshold. Beyond correct-
ness, Hibernus also improves upon Mementos in terms of
performance. To avoid the overhead of polling the voltage of
the energy storage capacitor’s voltage and the risk of energy
estimation, Hibernus leverages the Analog-to-Digital Con-
verter’s (ADC) interrupt mechanism. Hibernus configures
the ADC to fire an interrupt when voltage dips below a the
guard band threshold.

As Hibernus represents the most correct and highest per-
formance one-time checkpointing system, TotalRecall uses
it as the baseline for comparison. As our evaluation shows
(§6.2), for the FRAM-based systems targeted by Hibernus
and QuickRecall, guardbands are reasonable due to the
low time and energy cost of FRAM-based checkpoints. But,
the time and energy costs of Flash-based checkpoints make
adapting Hibernus’s approach to the Flash-based systems tar-
geted by Mementos prohibitively expensive. TotalRecall,
by keeping checkpoints in-place in SRAM, enables it to pro-
vide improved performance—with smaller guardbands—for
both Flash- and FRAM-based intermittent computation sys-
tems.

7.2 Continuous Checkpointing

The more recent continuous checkpointing systems eschew
taking a single, large, checkpoint, for many, smaller, check-
points. The driving observation that underlies such approaches
is that the short on-times of intermittent computation limits
the amount of state changed during a power cycle. Thus, the
checkpoint needed to track such a change is also small. The
challenge is avoiding the incorrectness of Mementos that
occurs due to post-checkpoint execution [46]. To avoid state
inconsistency during recovery, continuous checkpointing
systems must track program execution at a fine-grain, insert-
ing checkpoints where consistency demands. Researchers
approach this problem from two directions: compiler track-
ing and hardware tracking. Note that nomatter the execution
tracking approach, continuous checkpointing is incompat-
ible with Flash-based devices due to the time and energy
overheads of Flash writes/erases and Flash’s limited write
endurance.8

7.2.1 Compiler-directed. DINO [34], is a software-only,
programmer-driven checkpointing scheme for intermittent
8Even with systematically elided checkpoints [38], continuous checkpoint-
ing induces Flash write failure in less than a week [23].

computation. With DINO, programmers write programs us-
ing annotations that define a series of independent tasks,
backed by volatile data versioning (i.e., checkpointing) to
achieve recovery consistency. By doing this, DINO provides
the notion of task-based atomicity. Chain [5] extends Dino
with a more well-defined data passing interface between
tasks that reduces overhead through checkpoint size reduc-
tion at the expense of requiring more complex programmer
reasoning about possible data interfaces. Alpaca [37] ex-
tends DINO and Chain through the dynamic privatization
of statically-identified inter-task data. Alpaca detects shared
data using idempotence analysis and copies only the identi-
fied data into a private per-task buffer. This further reduces
log/checkpoint size to just the buffered data—ignoring all
volatile state.

Task-based intermittent systems afford a low overhead,
but required programmers to reason correctly and statically
about the effects of power loss. An automatic alternative is
Ratchet [52]. Ratchet is a compiler that decomposes unmodi-
fied code into a series of checkpoint-connected idempotent
computations. Tracking idempotency allows Ratchet to add
overhead only on the subset of non-volatile memory writes
that are critical for recovery consistency. Chinchilla [38]
improves upon Ratchet with guidance from a smart timer
and basic-block-level energy estimation. Like Ratchet, Chin-
chilla’s compiler inserts the checkpoints required to make
correct forward progress with very short on-times. Like Me-
mentos, Chinchilla includes a timer-based runtime compo-
nent that deactivates checkpoints when there is enough en-
ergy to make it to the next checkpoint. In many cases, this
eliminates 99% of Ratchet’s checkpoints, while maintaining
correct execution.

7.2.2 Hardware-directed. Idetic [40] is the first hardware-
based system for intermittent computation. Idetic takes ap-
plications, creates a hardware circuit from them using ex-
isting high-level synthesis tools, and inserts non-volatile
checkpoints in the resulting circuit’s control-and-data-flow
graph. While Idetic works for simple applications and single-
function hardware, it is not general purpose. Non-volatile
processors [35, 36] generalize the Idetic approach by incor-
porating non-volatility into existing processor pipelines (e.g.,
via non-volatile flip-flops). Recent work mixes-in approxima-
tion to improve performance [7] for applications that benefit
from partial results. Lastly, in an approach closer to compiler-
directed approaches than to other hardware-directed ap-
proaches, Clank [13] inserts in-hardware idempotence moni-
tors in the memory hierarchy to better identify idempotence
violations (compared to Ratchet) and to buffer idempotence-
breaking writes to maximally delay checkpoints. Elastin [3]
extends on the idea of Clank, but at page granularity, which
is used by more complex systems.

Forget Failure: Exploiting SRAM Data Remanence for Low-overhead Intermittent Computation ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

7.3 Checkpointing Beyond MCUs

While the focus of most intermittent computation research
targets decreasing checkpointing overhead, other important
problems exist. In the first line of work the focus is on pe-
ripherals. Most intermittent computation deployments in-
volve sensors, thus depend on peripherals. One hidden prob-
lem of peripherals is that initialization often takes longer
than a single power cycle [6]. Samoyed addresses this prob-
lem with a one-time checkpointing system that runs user-
annotated peripheral functions by disabling checkpoints
and undo-logging [39]. Samoyed guarantees progress by
energy profiling, dynamic peripheral workload scaling, and
a user-provided software fallback routine. The second line
of work focuses on extending intermittent computation to
x86-class processors. Work in this direction includes archi-
tectural support for out-of-order superscalar processors [36]
and compiler-based techniques that adapt to x86-class sys-
tems [4, 33, 44].

8 Conclusion

TotalRecall exploits the time-dependent volatility of Static
Random-Access Memory (SRAM) to eliminate the need for
expensive checkpoints to Flash-based non-volatile memory
for the off times common to intermittent computation. To
address the central challenge of identifying if SRAM acted
as a non-volatile memory during the off time, TotalRecall
uses a Cyclic Redundancy Check (CRC) before and after a
power cycle to validate SRAM data integrity. Our evalua-
tion on real hardware with unmodified benchmarks, shows
that, compared to the state-of-the-art one-time checkpoint-
ing approach applied to Flash-based systems, TotalRecall
increases performance by up to 370x , while dramatically
increasing system lifetime. On microcontrollers that have
hardware support for CRC, performance surpasses FRAM-
based checkpointing.
These results show that is is possible to have better than

FRAMperformance on themore widely deployed, more avail-
able, and higher performance Flash-based systems. Beyond
validating TotalRecall’s approach to supporting intermit-
tent computation, these results also open the door to a wave
of future approaches that leverage the synergy between the
relatively short off-times common to intermittent computing
and SRAM’s time-dependent volatility.

Acknowledgements

We thank our shepherd Brandon Lucia for his guidance and
the anonymous reviewers for their helpful suggestions. The
project depicted is sponsored by the Defense Advanced Re-
search Projects Agency. The content of the information does
not necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.
Approved for public release; distribution is unlimited.

References

[1] Domenico Balsamo, Alex Weddell, Geoff Merrett, Bashir Al-Hashimi,
Davide Brunelli, and Luca Benini. 2014. Hibernus: Sustaining Compu-
tation during Intermittent Supply for Energy-Harvesting Systems. In
IEEE Embedded Systems Letters.

[2] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M.
Al-Hashimi, G. V. Merrett, and L. Benini. 2016. Hibernus++: A Self-
Calibrating and Adaptive System for Transiently-Powered Embedded
Devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35, 12 (March 2016), 1968–1980.

[3] J. Choi, H. Joe, Y. Kim, and C. Jung. 2019. Achieving Stagnation-Free
Intermittent Computation with Boundary-Free Adaptive Execution. In
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). 331–344.

[4] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Com-
piler Directed Speculative Intermittent Computation. In International
Symposium on Microarchitecture (MICRO). 399–412.

[5] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for
Reliable Intermittent Programs. In International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA).
514–530.

[6] John H. Davies. 2008. MSP430 Microcontroller Basics (1 ed.). Elsevier
Ltd.

[7] K. Ganesan, J. SanMiguel, andN. Enright Jerger. 2019. TheWhat’s Next
Intermittent Computing Architecture. In IEEE International Symposium
on High Performance Computer Architecture (HPCA). 211–223.

[8] Peter Gutmann. 2001. Data Remanence in Semiconductor Devices. In
USENIX Security Symposium (USENIX Security).

[9] C. Helfmeier, C. Boit, D. Nedospasov, and J. P. Seifert. 2013. Cloning
Physically Unclonable Functions. In International Symposium on
Hardware-Oriented Security and Trust (HOST). 1–6.

[10] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic
and Repeatable Experimentation for Tiny Energy-harvesting Sensors.
In Proceedings of the 12th ACM Conference on Embedded Network Sensor
Systems.

[11] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of
the Coulombs: Federating Energy Storage for Tiny, Intermittently-
Powered Sensors. In ACM Conference on Embedded Networked Sensor
Systems (SenSys). 5–16.

[12] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel
Holcomb, Kevin Fu, Wayne P. Burleson, and Jacob Sorber. 2016. Per-
sistent Clocks for Batteryless Sensing Devices. ACM Transactions
on Embedded Computer Systems 15, 4, Article 77 (Aug. 2016), 77:1–
77:28 pages.

[13] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent
Computation. In International Symposium on Computer Architecture
(ISCA). 228–240.

[14] D. E. Holcomb, W. P. Burleson, and K. Fu. 2009. Power-Up SRAM State
as an Identifying Fingerprint and Source of True Random Numbers.
IEEE Trans. Comput. 58, 9 (Sept. 2009), 1198–1210.

[15] Daniel E. Holcomb, Amir Rahmati, Mastooreh Salajegheh, Wayne P.
Burleson, and Kevin Fu. 2012. DRV-Fingerprinting: Using Data Re-
tention Voltage of SRAM Cells for Chip Identification. In Proceedings
of the 8th International Conference on Radio Frequency Identification:
Security and Privacy Issues (RFIDSec). 165–179.

[16] G. Huang, L. Qian, S. Saibua, D. Zhou, and X. Zeng. 2013. An Efficient
Optimization Based Method to Evaluate the DRV of SRAM Cells. IEEE
Transactions on Circuits and Systems I: Regular Papers 60, 6 (June 2013),
1511–1520.

[17] Texas Instruments. 2006. MSP430 Competitive Benchmarking. (July
2006). https://people.eecs.berkeley.edu/~boser/courses/40/labs/docs/
microcontroller%20benchmarks.pdf.

[18] Texas Instruments. 2010. MSP430L092—MSP430L092, MSP430C09x
Mixed-Signal Microcontrollers. (September 2010). http://www.ti.com/

https://people.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%20benchmarks.pdf
https://people.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%20benchmarks.pdf
http://www.ti.com/lit/ds/symlink/msp430l092.pdf
http://www.ti.com/lit/ds/symlink/msp430l092.pdf

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Harrison Williams, Xun Jian, and Matthew Hicks

lit/ds/symlink/msp430l092.pdf.
[19] Texas Instruments. 2013. MSP430x2xx Family User’s Guide (Rev. J).

(2013). http://www.ti.com/lit/ug/slau144j/slau144j.pdf.
[20] Texas Instruments. 2014. FRAM FAQs. (January 2014). http://www.ti.

com/lit/ml/slat151/slat151.pdf.
[21] Texas Instruments. 2015. MSP432P4xx SimpleLink Microcontrollers

Technical Reference Manual. (March 2015). http://www.ti.com/lit/ug/
slau356i/slau356i.pdf.

[22] Texas Instruments. 2018. CRC Implementation with MSP430™MCUs.
(2018). http://www.ti.com/lit/an/slaa221a/slaa221a.pdf.

[23] Texas Instruments. 2018. MSP430 Flash Memory Characteristics (Rev.
B). (2018). http://www.ti.com/lit/an/slaa334b/slaa334b.pdf.

[24] Texas Instruments. 2018. MSP430F5438A—MSP430F543xA,
MSP430F541xA Mixed-Signal Microcontrollers. (September 2018).
http://www.ti.com/lit/ds/symlink/msp430f5438a.pdf.

[25] Texas Instruments. 2018. MSP430FR5964—MSP430FR599x,
MSP430FR596x Mixed-Signal Microcontrollers. (August 2018).
http://www.ti.com/lit/ds/symlink/msp430fr5964.pdf.

[26] Texas Instruments. 2018. MSP430FR698x(1), MSP430FR598x(1) Mixed-
Signal Microcontrollers. (2018). http://www.ti.com/lit/ds/symlink/
msp430fr6989.pdf.

[27] Texas Instruments. 2019. MSP430 GCC. (June 2019). http://www.ti.
com/lit/ug/slau646e/slau646e.pdf.

[28] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014.
QUICKRECALL: A Low Overhead HW/SW Approach for Enabling
Computations across Power Cycles in Transiently Powered Computers.
In International Conference on VLSI Design and International Conference
on Embedded Systems.

[29] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2016.
Energy-Aware Memory Mapping for Hybrid FRAM-SRAM MCUs in
IoT Edge Devices. In International Conference on VLSI Design and In-
ternational Conference on Embedded Systems (VLSID).

[30] Joseph Kahn, Randy Katz, and Kristofer Pister. 1999. Next Century
Challenges: Mobile Networking for ”Smart Dust”. In Conference on
Mobile Computing and Networking (MobiCom).

[31] Udo Karthaus and Martin Fischer. 2003. Fully Integrated Passive UHF
RFID Transponder IC With 16.7-µ W Minimum RF Input Power. In
IEEE Journal of Solid-State Circuits, Volume 38.

[32] P. Koopman and T. Chakravarty. 2004. Cyclic redundancy code (CRC)
polynomial selection for embedded networks. In International Confer-
ence on Dependable Systems and Networks, 2004. 145–154.

[33] Q. Liu, C. Jung, D. Lee, and D. Tiwari. 2016. Compiler-Directed Light-
weight Checkpointing for Fine-Grained Guaranteed Soft Error Recov-
ery (SC). 228–239.

[34] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Program-
ming and Execution Model for Intermittent Systems. In Conference on
Programming Language Design and Implementation (PLDI). 575–585.

[35] Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang Zheng,
Shuangchen Li, Yongpan Liu, Yuan Xie, John Sampson, and Vijaykrish-
nan Narayanan. 2016. Nonvolatile Processor Architectures: Efficient,
Reliable Progress with Unstable Power. In IEE Micro Volume 36, Issue
3.

[36] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie,
and V. Narayanan. 2015. Architecture exploration for ambient energy
harvesting nonvolatile processors. In IEEE International Symposium
on High Performance Computer Architecture (HPCA). 526–537.

[37] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Inter-
mittent Execution Without Checkpoints. In International Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 96:1–96:30.

[38] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Check-
pointing for Safe Efficient Intermittent Computing. In USENIX Confer-
ence on Operating Systems Design and Implementation (OSDI). 129–144.

[39] Kiwan Maeng and Brandon Lucia. 2019. Supporting Peripherals in
Intermittent Systems with Just-in-time Checkpoints. In SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI).
1101–1116.

[40] A. Mirhoseini, E. M. Songhori, and F. Koushanfar. 2013. Idetic: A
high-level synthesis approach for enabling long computations on
transiently-powered ASICs. In International Conference on Pervasive
Computing and Communications (PerCom). 216–224.

[41] University of Washington. 2014. WISP 5 GitHub. (April 2014). http:
//www.github.com/wisp/wisp5.

[42] Yossef Oren, Ahmad-Reza Sadeghi, and Christian Wachsmann. 2013.
On the Effectiveness of the Remanence Decay Side-channel to Clone
Memory-based PUFs. In International Conference on Cryptographic
Hardware and Embedded Systems (CHES). 107–125.

[43] Huifang Qin, Yu Cao, Dejan Markovic, Andrei Vladimirescu, and Jan
Rabaey. 2004. SRAM Leakage Suppression by Minimizing Standby Sup-
ply Voltage. In International Symposium on Quality Electronic Design
(ISQED). 55–60.

[44] Qingrui Liu and Changhee Jung. 2016. Lightweight Hardware Support
for Transparent Consistency-Aware Checkpointing in Intermittent
Energy-Harvesting systems. In Non-Volatile Memory Systems and Ap-
plications Symposium (NVMSA).

[45] Amir Rahmati, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber,
Wayne Burleson, and Kevin Fu. 2012. TARDIS: Time and Remanence
Decay in SRAM to Implement Secure Protocols on Embedded Devices
without Clocks. In USENIX Security Symposium.

[46] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile Memory is
a Broken Time Machine. InWorkshop on Memory Systems Performance
and Correctness.

[47] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: Sys-
tem Support for Long-Running Computation on RFID-Scale Devices.
In Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[48] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith. 2008. Design of an RFID-Based Battery-Free Programmable
Sensing Platform. IEEE Transactions on Instrumentation and Measure-
ment 57, 11 (Nov 2008), 2608–2615.

[49] Henry Sodano, Gyuhae Park, and Daniel Inman. 2004. Estimation of
Electric Charge Output for Piezoelectric Energy Harvesting. In Strain,
Volume 40.

[50] Pico Technology. 2016. PicoScope 2000 Series. (2016).
https://www.picotech.com/download/datasheets/picoscope-2000-
series-data-sheet-en.pdf.

[51] Priya Thanigai. 2011. FRAMs as alternatives to flash memory in embed-
ded designs. (July 2011). https://www.embedded.com/design/mcus-
processors-and-socs/4390688/2/FRAMs-as-alternatives-to-flash-
memory-in-embedded-designs.

[52] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Com-
putation without Hardware Support or Programmer Intervention. In
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 17–32.

[53] Yu-Chi Wu, Pei-Fan Chen, Zhi-Huang Hu, Chao-Hsu Chang, Gwo-
Chuan Lee, and Wen-Ching Yu. 2009. A Mobile Health Monitoring
System Using RFID Ring-Type Pulse Sensor. In Conference on Depend-
able, Autonomic, and Secure Computing (DASC).

[54] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu.
2011. Moo: A Batteryless Computational RFID and Sensing Platform.
In Technical Report UMCS-2011-020.

http://www.ti.com/lit/ds/symlink/msp430l092.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ml/slat151/slat151.pdf
http://www.ti.com/lit/ml/slat151/slat151.pdf
http://www.ti.com/lit/ug/slau356i/slau356i.pdf
http://www.ti.com/lit/ug/slau356i/slau356i.pdf
http://www.ti.com/lit/an/slaa221a/slaa221a.pdf
http://www.ti.com/lit/an/slaa334b/slaa334b.pdf
http://www.ti.com/lit/ds/symlink/msp430f5438a.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5964.pdf
http://www.ti.com/lit/ds/symlink/msp430fr6989.pdf
http://www.ti.com/lit/ds/symlink/msp430fr6989.pdf
http://www.ti.com/lit/ug/slau646e/slau646e.pdf
http://www.ti.com/lit/ug/slau646e/slau646e.pdf
http://www.github.com/wisp/wisp5
http://www.github.com/wisp/wisp5
https://www.picotech.com/download/datasheets/picoscope-2000-series-data-sheet-en.pdf
https://www.picotech.com/download/datasheets/picoscope-2000-series-data-sheet-en.pdf
https://www.embedded.com/design/mcus-processors-and-socs/4390688/2/FRAMs-as-alternatives-to-flash-memory-in-embedded-designs
https://www.embedded.com/design/mcus-processors-and-socs/4390688/2/FRAMs-as-alternatives-to-flash-memory-in-embedded-designs
https://www.embedded.com/design/mcus-processors-and-socs/4390688/2/FRAMs-as-alternatives-to-flash-memory-in-embedded-designs

Forget Failure: Exploiting SRAM Data Remanence for Low-overhead Intermittent Computation ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

A Artifact Appendix

A.1 Abstract

This artifact appendix describes how to use the toolchain
and reproduce functionality results for TotalRecall. The
artifact contains source code for TotalRecall, baseline sys-
tems, and several benchmarks and is publicly available as a
GitHub repository and on the open-access repository Zen-
odo. This artifact does not produce performance data for the
comparison between TotalRecall and baseline systems; it
is intended to be used to demonstrate basic functionality on
real hardware.

A.2 Artifact check-list (meta-information)

• Algorithm: SRAM-based one-time checkpointing system.
• Program: Texas Instruments and custom-developed bench-
marks. These benchmarks are included.
• Compilation: msp430-gcc version >= 8.3.0. Not included.
• Binary: Pre-compiled binaries for the MSP430G2553 and
MSP430FR6989 are included.
• Run-time environment: Tested on Ubuntu 18.04 with
mspdebug version >= 0.25 installed. Root access is required
to install dependencies.
• Hardware: Texas Instruments MSP-EXP430G2ET or MSP-
EXP430FR6989 Launchpads.
• How much disk space required (approximately)?: < 5
MB.
• How much time is needed to prepare workflow (ap-

proximately)?: Twenty minutes.
• How much time is needed to complete experiments

(approximately)?: Ten minutes.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT License

A.3 Description

A.3.1 Howdelivered. TotalRecall is publicly available through
its git repository at https://github.com/FoRTE-Research/TotalRecall-
artifact and on Zenodo (https://doi.org/10.5281/zenodo.3562888).
The repository contains both TotalRecall and benchmark source
code, as well as prebuilt binaries to facilitate testing.

A.3.2 Hardware dependencies. TotalRecall was developed
and tested on theMSP-EXP430G2ET andMSP-EXP430FR6989 Launch-
pads; either works to reproduce the results here.

A.3.3 Software dependencies.

• msp430-gcc is the Texas Instruments open source toolchain
for MSP430 microcontrollers. It is necessary to generate the
benchmark binaries.
• mspdebug is a free, open source debugger for MSP430 MCUs.
It is used to flash benchmark binaries to hardware.

A.4 Installation

TotalRecall: Clone the repository from
https://github.com/FoRTE-Research/TotalRecall-artifact
and follow the instructions provided in README.md.

msp430-gcc: We do not provide msp430-gcc as part of the arti-
fact evaluation repository; install it by following the instructions
at http://www.ti.com/tool/MSP430-GCC-OPENSOURCE.

mspdebug: A detailed description of the mspdebug installation
process is available in README.md of the artifact repository.

A.5 Experiment workflow

1. Compile the benchmarks for your board by running make
DEVICE={msp430g2553, msp430fr6989} SYS={sram, flash,
fram} in the msp430 directory.

2. Flash a benchmark to the device by opening mspdebug and
programming the corresponding binary, for example by en-
tering prog msp430/msp430g2553/bin/quicksort.bin in
the mspdebug console.

3. Close mspdebug to allow the MCU to execute freely.
4. On the MSP430G2553, the RGB LED is blue during bench-

mark execution and green when the benchmark is complete
with correct output. On the MSP430FR6989, the red and
green LEDs are both on during benchmark execution. The
red LED turns off when the benchmark is complete. The
quicksort benchmark takes approximately 10 seconds to
complete.

5. Press button S1 to take a checkpoint and halt execution. On
the MSP430G2553, the LED connected to port P1.0 will flash
green; it is illuminated during the checkpoint routine.

6. Reset the device either by pressing the reset button or unplug-
ging the Launchpad. Execution will continue from where
it left off—if the benchmark was complete when the check-
point occurred, the RGB LED should immediately turn green.
Otherwise, the device should finish the benchmark starting
from the point when the checkpoint was taken (e.g., if the
checkpoint is taken 7 seconds into the quicksort benchmark
it should reach completion in 3 seconds following a reset).

7. Verify that TotalRecall detects when SRAM state is lost
by taking a checkpoint, unplugging the Launchpad, and
then either waiting an extended time period (>= 5 minutes)
or holding down the reset button, both of which drain the
processor supply voltage. Restoring power to the device will
start the benchmark execution from the beginning.

A.6 Evaluation and expected result

On either platform, resetting the device after taking a checkpoint
results in execution restarting from the checkpoint rather than from
the beginning. This is best measured by recording the runtime of a
benchmark and then checkpointing/resetting partway through and
determining the total runtime, or by waiting until the benchmark
completes and then taking a checkpoint and resetting (the device
should immediately enter the "benchmark complete" state).

On the MSP-EXP430G2ET, the device can also be reset by mo-
mentarily unplugging the Launchpad from its power supply. The
11.1µF of onboard capacitance is sufficient to retain SRAM across
the time it takes a user to unplug and plug back in the launchpad.
This procedure is not practical on the MSP-EXP430FR6989 due to
the more power-intensive MCU, feature-rich launchpad, and lower
capacitance (10.4µF); resetting the device without unplugging it
demonstrates the software checkpoint/recovery, but not SRAM
remanence.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Harrison Williams, Xun Jian, and Matthew Hicks

The results in Figure 4 are collected using the custom power-
control board shown in Figure 3. The control board separates the
device under test (DUT) and the debug/power interface, which are
normally connected/disconnected using jumpers on the MSP430
Launchpads. To prevent current draw through the debug interface,
the DUT is isolated by MOSFET switches toggled by a secondary
microcontroller on the control board. The DUT side of the 3.3V
rail is powered by a DAC on the control board, and the 5V rail is
left disconnected. When removing power, the DAC is switched to a
high-impedance mode to better approximate real energy harvesting
hardware.

Note: When using the NVM (Flash or FRAM) checkpoints, users
should take care to manually remove the checkpoint when re-
programming a workload so the system does not inadvertently
"recover" into the old checkpoint. On the MSP430G2553, the pre-
program Flash erase takes care of this. On the MSP430FR6989,
running fill 0x4400 2 0 in mspdebug will remove the flag value
indicating a valid checkpoint.

A.7 Customization/Re-use

TotalRecall can be added to any system by recompiling and
linking against the checkpointing libraries and new linker scripts.
Because the demonstration version depends on buttons and LEDs

attached to GPIO pins, porting to new devices also requires minor
pin assignment changes in both the TotalRecall and benchmark
code. More detailed instructions on how to re-use TotalRecall is
in the README.md of the artifact.

We also provide different implementations of TotalRecall as
well as baseline systems for comparison. On the MSP430G2553, we
provide two checkpoint systems:
• SRAM in-place checkpoint verified by software-generated
CRC 16 (default).
• Flash checkpoint.

On the MSP430FR6989, we provide two checkpoint systems:
• SRAM in-place checkpoint verified by hardware-generated
CRC 32 (default).
• FRAM checkpoint.

Instructions on how to change the checkpoint system are included
in the artifact’s README.md.

A.8 Methodology

Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20200102.html
• http://cTuning.org/ae/reviewing-20200102.html
• https://www.acm.org/publications/policies/artifact-review-badging

http://cTuning.org/ae/submission-20200102.html
http://cTuning.org/ae/reviewing-20200102.html
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background
	2.1 Intermittent Computation
	2.2 Microcontroller Memory Hierarchy
	2.3 NVM Choices

	3 Motivation
	3.1 Intermittent Off Times are Short
	3.2 SRAM has Time-dependent Volatility

	4 TotalRecall Design
	4.1 Challenge: Detecting Volatility
	4.2 Our Solution: Cyclic Redundancy Checks (CRC)
	4.3 TotalRecall Overview
	4.4 Checkpoint Layout and Creation
	4.5 Restoring from Checkpoints

	5 TotalRecall Implementation
	5.1 CRC Implementation
	5.2 Additional Challenges

	6 Evaluation
	6.1 Correctness
	6.2 TotalRecall's Overhead
	6.3 TotalRecall Practical Considerations

	7 Related Work
	7.1 One-time Checkpointing
	7.2 Continuous Checkpointing
	7.3 Checkpointing Beyond MCUs

	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Customization/Re-use
	A.8 Methodology

