Failure Sentinels: Ubiquitous Just-in-time Intermittent Computation via hardware support for continuous, lowcost, fine-grain voltage monitoring

Harrison Williams hrwill@vt.edu Michael Moukarzel mamoukar@vt.edu Matthew Hicks mdhicks2@vt.edu

Processors have outpaced batteries

Processor/logic

2

The future is batteryless!

COMPUTER SCIENCE

Challenge: harvested energy is unpredictable energy

Supporting intermittent computation

Time

Hardware support is inevitable

- Code instrumentation to reduce wasted energy
- Energy-aware task schedulers
- Energy-aware hardware accelerators

Promising intermittent systems all require knowledge of energy availability

What do we want in a voltage monitor?

- 1. Minimal power consumption
 - 2. Sufficient performance
 - 3. Maximal scalability

The cost of hardware support

Analog-to-Digital Converters (ADCs)

- High precision
- High sample rate
- Massive power consumption (>2x core power)

Analog Comparators

- Low response time
- Single bit precision
- High power consumption(30-80% of core power)

Power	Performance	Scalability
*	$\checkmark \rightarrow \texttt{X}$	*

CMOS gates reveal supply voltage

Observation: supply voltage sets digital gate delay

Idea: track gate delay to determine supply voltage

Using digital gates for voltage information

Single bit of information (did signal propagate in time?)

Narrow dynamic range (how far did signal propagate?)

Wide dynamic range (how many circumnavigations?)

Failure Sentinels core

Mapping RO frequency to voltage

Not one-to-one

Low sensitivity

Mapping RO frequency to voltage

High sensitivity

One-to-one

Lower power

Tuning measurement voltage

Failure Sentinels Hardware

Converting count to voltage

RO count indexes into lookup table

- Piecewise-constant: low software load
- Piecewise-linear: modest software load

Device enrollment eliminates manufacture-time error

Is Failure Sentinels performant/efficient?

Does Failure Sentinels improve systems?

Monitor	System Current (µA)	Resolution (mV)	F _s (kHz)
Ideal	112.3	Infinite	Infinite
FS (Low Power)	112.5	50	1
FS (High Performance)	113.6	38	10
Comparator	147.3	30	-
ADC	377.3	0.293	200

Low-power operation at diverse performance points

<1% runtime reduction for checkpoint systems

Failure Sentinels Summary

- Intermittent computing is energy-driven: systems demand energy efficiency and awareness
- But, current hardware sacrifices power for unneeded performance

Failure Sentinels makes energy a first-class abstraction

- Removes **99%** of energy overhead without compromising performance
- **Enables** sophisticated energy harvesting systems

https://github.com/FoRTE-Research/FailureSentinels-artifact

