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Circuit Support for Practical and Performant Batteryless Systems
Harrison R. Williams

(ABSTRACT)

Tiny, ultra-low-power embedded processors enable sophisticated computing deployments in

a myriad of areas previously off limits to computing power, ranging from intelligent medical

implants to massive scale ’smart dust’-type sensing deployments. While today’s comput-

ing and sensing hardware is well-suited for these next generation deployments, the batteries

powering them are not: the size and weight of today’s mobile and Internet-of-Things devices

are dominated by their batteries, which also limit systems’ lifespans and potential for deploy-

ment in sensitive contexts. Academic efforts have demonstrated the feasibility of harvesting

energy on-demand from the environment as a practical alternative to classical battery power,

instead buffering harvested energy in a capacitor to power intermittent bursts of operation.

Energy harvesting circuits are miniaturizable, inexpensive, and enable effectively indefinite

operation when compared to batteries—but introduce new problems stemming from the lack

of a reliable power source. Unfortunately, these problems have so far confined batteryless

systems to small-scale research deployments.

The central design challenge for effective batteryless operation is efficiently using scarce

input power from the energy harvesting frontend. Despite advances in both harvester and

processor efficiency, digital systems often consume orders of magnitude more power than can

be supplied by harvesting circuits—forcing systems to operate in short bursts punctuated

by power failure and a long recharge period. Today’s batteryless systems pay a steep price

to sustain operation across these common-case power losses: current platforms depend on

high-performance non-volatile memory to quickly and efficiently checkpoint program state

before power loss, limiting batteryless operation to a small selection of devices which inte-



grate these novel memory technologies. Choosing exactly when to checkpoint to non-volatile

memory represents a challenge in itself: the hardware required to detect impending power

failure often represents a large proportion of the system’s overall energy consumption, forc-

ing designers to choose between the energy overhead of voltage monitoring or the runtime

overhead of ’energy-oblivious’ checkpointing models. Finally, the choice of buffer capacitor

size has a large impact on overall energy efficiency—but the optimal choice depends on run-

time energy dynamics which are difficult to predict at design time, leaving designers to make

at best educated guesses about future environmental conditions. This work approaches en-

ergy harvesting system design from a circuits perspective, answering the following research

questions towards practical and performant batteryless operation:

1. Can the emergent properties of today’s low-power systems be used to enable efficient

intermittent operation on new classes of devices?

2. What compromises can we make in voltage monitor design to minimize power con-

sumption while maintaining just enough functionality for batteryless operation?

3. How can we buffer harvested energy in a way that maximizes energy efficiency despite

unpredictable system-level power dynamics?

This work answers the following questions by producing the following research artifacts:

1. The first non-volatile memory invariant system to enable intermittent operation on

embedded devices lacking high-performance memory (Chapter 2).

2. The first voltage monitoring circuit designed for batteryless systems to enable energy-

aware operation without sacrificing efficiency (Chapter 3).

3. The first highly efficient power-adaptive energy buffer to store harvested energy without

compromising on efficiency or performance (Chapter 4).
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(GENERAL AUDIENCE ABSTRACT)

Tiny, ultra-low-power embedded processors enable sophisticated computing deployments in

a myriad of areas previously off limits to computing power, ranging from intelligent medical

implants to massive scale ’smart dust’-type sensing deployments. While today’s comput-

ing and sensing hardware is well-suited for these next generation deployments, the batteries

powering them are not: the size and weight of today’s mobile and Internet-of-Things devices

are dominated by their batteries, which also limit systems’ lifespans and potential for deploy-

ment in sensitive contexts. Academic efforts have demonstrated the feasibility of harvesting

energy on-demand from the environment as a practical alternative to classical battery power,

instead buffering harvested energy in a short-term energy store (i.e., a capacitor) to power

intermittent bursts of operation. Energy harvesting circuits are miniaturizable, inexpensive,

and enable effectively indefinite operation when compared to batteries—but introduce new

problems stemming from the lack of a reliable power source. Unfortunately, these problems

have so far confined batteryless systems to small-scale research deployments.

The central design challenge for effective batteryless operation is efficiently using scarce

input power from the energy harvesting frontend. Despite advances in both harvester and

processor efficiency, digital systems often consume orders of magnitude more power than can

be supplied by harvesting circuits—forcing systems to operate in short bursts punctuated

by power failure and a long recharge period. Today’s batteryless systems pay a steep price

to sustain operation across these common-case power losses: current platforms depend on

high-performance non-volatile memory (which retains state without power) to quickly and ef-

ficiently checkpoint program state before power loss, limiting batteryless operation to a small



selection of devices which integrate these novel memory technologies. Choosing exactly when

to checkpoint to non-volatile memory represents a challenge in itself: the hardware required

to detect impending power failure often represents a large proportion of the system’s overall

energy consumption, forcing designers to choose between the energy overhead of voltage

monitoring or the runtime overhead of ’energy-oblivious’ checkpointing models. Finally, the

choice of energy buffer size has a large impact on overall energy efficiency—but the optimal

choice depends on runtime energy dynamics which are difficult to predict at design time,

leaving designers to make at best educated guesses about future environmental conditions.

This work approaches energy harvesting system design from a circuits perspective, answering

the following research questions towards practical and performant batteryless operation:

1. Can the emergent properties of today’s low-power systems be used to enable efficient

intermittent operation on new classes of devices?

2. What compromises can we make in voltage monitor design to minimize power con-

sumption while maintaining just enough functionality for batteryless operation?

3. How can we buffer harvested energy in a way that maximizes energy efficiency despite

unpredictable system-level power dynamics?

This work answers the following questions by producing the following research artifacts:

1. The first non-volatile memory invariant system to enable intermittent operation on

embedded devices lacking high-performance memory (Chapter 2).

2. The first energy monitoring circuit designed for batteryless systems to enable energy-

aware operation without sacrificing efficiency (Chapter 3).

3. The first highly efficient power-adaptive energy buffer to store harvested energy without

compromising on efficiency or performance (Chapter 4).
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Chapter 1

Introduction

Decades of sustained transistor downscaling, alongside improvements in processor archi-

tecture and low-power system design, have produced tiny and inexpensive yet feature-rich

computing systems that operate on only micro-watts of power. These highly efficient systems

form the backbone of the Internet-of-Things (IoT)—bringing connectivity and intelligence

to areas previously off limits to computing power in domains ranging from sophisticated in-

body healthcare [105, 138, 139] and space deployments [30] to massive-scale infrastructure

or environmental sensing networks [2, 56, 123]. As sensing, computation, and communica-

tion continue to scale down to smart dust [83] dimensions, system designers face both new

challenges and opportunities as a result of this extreme miniaturization.

One such challenge is the growing disparity between processor performance and battery

energy density. While Moore’s Law has driven exponential growth in on-chip processing

power, no such analog exists for batteries, which have historically scaled at a modest linear

rate [125]. As a result, batteries are now the limiting factor in further miniaturizing today’s

mobile systems: meeting typical operational lifespans (e.g., 10 years [12]) requires integrating

a battery that is often orders of magnitude larger than the processor it powers, preventing

practical deployment in size/weight-constrained scenarios as well as in sensitive contexts

where the volatility of a battery is unacceptable. As long as mobile processors remain

tethered to batteries, truly ubiquitous computing will remain out of reach.

Energy harvesting systems, which operate exclusively using energy scavenged from the en-
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2 CHAPTER 1. INTRODUCTION

vironment in which they are deployed, offer a solution. Environmental energy is abundant

and available in many forms: research has demonstrated practical energy harvesters based

on both mature (e.g., solar [40], RF [14]) and novel technologies (e.g., vibration [127], chemi-

cal [105], heat gradients [122]) suitable for a variety of deployments. Energy harvesters solve

the primary problems associated with battery-powered operation: many harvesting circuits

can be miniaturized down closer to the scale of the processor [138], while the renewable

nature of environmental energy enables effectively indefinite operation.

Despite the system-level potential of batteryless energy harvesting systems, foregoing bat-

teries introduces a myriad of lower-level performance and practicality barriers that prevent

widespread deployment of batteryless systems beyond the lab. Extreme energy scarcity—

most harvesters output a small trickle of energy relative to the power consumption of even a

small mobile system—forces batteryless systems to operate at very low duty cycles, in short

bursts of operation punctuated by long recharge times. The highly volatile nature of envi-

ronmental energy means that the timing and duration of these short bursts of operation are

typically impossible to predict, leaving developers with little information to reason about the

behavior of their system. Building sophisticated systems on batteryless platforms requires

first that designers find ways to extend program execution across these unpredictable yet

frequent power cycles, an area of study researchers have termed intermittent computation.

1.1 An Overview of Intermittent Computation

Figure 1.1 illustrates the basic hardware design and operating behavior of a computational

energy harvesting system. The harvester stores energy in an intermediate buffer capacitor

until the capacitor voltage reaches some predefined enable level, at which point the micro-

controller and associated peripherals begin operation. The system drains energy from the
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(a) Energy harvesting block diagram (b) Idealized supply voltage for energy harvester
microcontroller. Red line indicates the minimum
voltage for code execution.

Figure 1.1: Energy harvesting device block diagram and idealized power supply (Vdd). In a
real system, the charge/discharge rate depends on the harvester’s yield, the microcontroller’s
current draw, and the capacitor size. The green highlighted regions indicate when the mi-
crocontroller computes.

storage capacitor to do work until the capacitor voltage reaches some disable point (often the

brown-out voltage of the microcontroller), and the charge/discharge cycle repeats. Because

system size, cost, and charge time constraints limit the size of the storage capacitor, the

length of a continuous operating period is often on the scale of hundreds of milliseconds.

Because program progress and intermediate state is normally stored in volatile memory—

which loses its contents upon power loss—unmodified code will never complete under these

circumstances, losing all progress and beginning anew on each power cycle.

There are two basic requirements to support intermittent computation following a power

loss: (1) recover the program’s pre-power-cycle state and (2) ensure the recovered program

state is consistent. Figure 1.2 gives a high-level overview of the different approaches explored

in the literature. Each approach has its own set of tradeoffs, giving designers a wide range

of options when building an intermittent system.
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Intermittent Computing

Hardware-based

Non-volatile processors [92]

Clank [52]

Elastin [19]

Idetic [102]

Compiler-based

Ratchet [137]

Chinchilla [94]

RockClimb [21]

Task-based

DINO [91]

Chain [23]

Alpaca [97]

Just-in-Time

Mementos [121]

QuickRecall [77]

Hibernus [8]

TotalRecall [134]

Samoyed [95]

Figure 1.2: A taxonomy of checkpointing techniques for intermittent computation.
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Just-In-Time (JIT) Checkpointing: JIT checkpointing systems use a combined hard-

ware/software approach to save and restore state across power cycles. These systems use

analog voltage measurement circuits to monitor the remaining energy in the supply capac-

itor and configure an interrupt to trigger when capacitor voltage falls, indicating power

loss is imminent. This interrupt commits all volatile program state (i.e., program data

stored in volatile memory and architectural registers) to Non-Volatile Memory (NVM) to

be restored on the following power-up. JIT checkpointing schemes minimize both software

overhead and programming effort—only strictly-necessary checkpoints are taken, and the

software component may be integrated at link-time into unmodified application code—but

incur additional hardware and energy overhead in the form of quiescent current for the

voltage monitor. One notable limitation of JIT approaches is that execution must stop be-

tween recording and recovering from a checkpoint, as re-executing uncheckpointed work can

violate program semantics when the re-executed work is non-idempotent [120]. While the

energy overhead of voltage monitoring systems can be substantial, JIT approaches using

low-power voltage monitors typically outperform other checkpointing approaches on pure

software benchmarks [95, 135].

Task-based Checkpointing: JIT checkpointing systems face problems when software

contains atomic operations that cannot be split across power cycles (e.g., interactions with

peripherals), as checkpoints partway through an atomic operation will cause a silent failure

when software assumes a failed atomic operation actually completed. Task-based systems

address this problem: instead of automatically checkpointing in a ’program-oblivious’ man-

ner as in a JIT system, programmers logically separate code into a series of ’tasks’ rendered

repeatable and atomic by the checkpointing system. Checkpoints are only recorded between

tasks—ensuring no atomic operation is ever split—and state is transparently ”rolled back”

when a task is interrupted by power failure, completely re-executing the task until the system
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can reach the next checkpoint. Task-based systems ensure correctness and do not require

hardware support in the form of a voltage monitor, but require the programmer to refactor

their code and reason about power conditions when deciding on the length of tasks. Task-

based systems incur more software overhead than JIT systems because their programming

models require checkpoints regardless of power conditions, introducing unnecessary check-

points which are never needed to recover. More recent work combining efficient, energy-aware

JIT checkpointing with the rollback mechanisms developed for task-based models blends the

performance of JIT approaches with the correctness of task-based ones [95].

Compiler-based Checkpointing: Task-based systems ensure correctness at the cost of

increased programmer effort. Compiler-based checkpointing techniques offer an alternative,

identifying through static analysis the non-idempotent sections that threaten program cor-

rectness and automatically inserting checkpoints of the minimal state required to render

them idempotent. Such systems minimize design effort and hardware overhead by eliminat-

ing the need for voltage monitors or task-based programming models at the cost of increased

software overhead continuously checkpointing state throughout the program.

Hardware-based Checkpointing: While the above techniques are suitable for commer-

cially available low-power systems, enabling intermittent operation by modifying the hard-

ware is another viable approach. Hardware-based approaches range from intermittency-

aware memory management units [52] to fully-non-volatile processors [92] which eliminate

the need for any software mitigation of power failures. While such techniques offer a promis-

ing avenue for simple and efficient intermittent computation, the need for custom hardware

remains a major barrier in their widespread adoption.
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1.2 Circuit- and Device-level Challenges

While extending program execution across power cycles is a central component of effective

batteryless systems, considerations beyond software execution contribute to the functional

gap between batteryless systems and their battery-powered counterparts. One major obsta-

cle is current checkpointing systems’ dependence on high-performance non-volatile memo-

ries such as Ferroelectric RAM (FRAM) and Magnetoresistive RAM (MRAM); while these

memories offer non-volatility with performance characteristics comparable to typical volatile

RAM (i.e., Static RAM, or SRAM), they are integrated into only a tiny fraction of currently

available systems. The most widespread NVM—Flash—is unsuitable for the high write rates

of existing checkpointing systems, leaving batteryless operation beyond the reach of the vast

majority of existing systems. Worse, current iterations of these next-generation non-volatile

RAMs underperform typical Flash and SRAM in terms of access frequency and energy—

forcing intermittent systems to pay a steep common-case performance price to enable current

checkpointing strategies.

Other challenges arise as a result of the basic architecture of batteryless systems. Typical

batteryless systems buffer energy in a single bulk capacitor, the size of which has a profound

impact on the behavior of the system. Capacitor size exists on a trade space: large capacitors

buffer more energy, enabling longer continuous bursts of operation which support longer

atomic operations and reduce the overhead incurred recovering from power loss. These

large capacitors, however, force the system to buffer more energy to begin operation at

all—reducing a system’s ability to quickly turn on and react to incoming events even if

those events require relatively little energy to address. Small capacitors face the opposite

problem: the system charges quickly, but cannot buffer enough energy to reliably support

long-running operations (and in the worst case may even need to burn off energy as heat to
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prevent overvoltage if they reach capacity). This responsiveness-capacity tradeoff prevents

current batteryless systems from reliably and flexibly addressing different kinds of events

using a single hardware platform.

1.3 Contributions of This Work

My work approaches batteryless operation from a circuits perspective to overcome applica-

bility and performance barriers holding back today’s energy harvesting systems. Specifically,

I introduce the research artifacts detailed below:

1. TotalRecall (Chapter 2): A Just-In-Time checkpointing library that exploits SRAM’s

time-dependent non-volatility to enable practical and performant NVM-agnostic inter-

mittent computation, bringing batteryless operation to the cheapest, most widespread,

and most performant low-power systems available today.

2. Failure Sentinels (Chapter 3): An ultra-low-power, all-digital voltage monitor opti-

mized for batteryless systems designed to eliminate the hardware energy, size, and

cost overheads associated with JIT checkpointing.

3. REACT (Chapter 4): An energy-adaptive buffer circuit designed to close the responsiveness-

capacity trade space holding back batteryless systems by matching buffer capacitance

to immediate power supply/demand dynamics.



Chapter 2

Exploiting SRAM Data Remanence

for Intermittent Computation

2.1 Introduction

As modern microcontrollers become smaller and more energy efficient, system designers are

finding novel applications for these devices in a variety of areas. The advent of wearable

devices [139], RFID smart tags [147], and smart dust [83] represents potential for designers to

leverage new low-power chips towards more ubiquitous computing and a greatly expanded

Internet-of-Things (IoT). The limiting factor is not microcontrollers themselves, but the

batteries powering such devices—today’s battery-powered devices are not limited in size

by the density of devices on silicon, but by energy demands dictating a battery that often

makes up the bulk of the space and cost of the product. Both the economic and engineering

feasibility of shrinking IoT and other ubiquitous computing devices depend on foregoing

batteries.

A necessary component of a batteryless future is energy harvesting circuits, which draw

power from the environment from sources such as RFID readers [84] or ambient vibra-

tion [127]. Many energy harvesters cannot output enough energy to continuously power

microcontrollers; they trickle charge into a capacitor, providing enough power for brief com-

putation, until the capacitor empties sufficiently, and the cycle repeats.

9



10 CHAPTER 2. EXPLOITING SRAM DATA REMANENCE FOR INTERMITTENT COMPUTATION

To enable reliable intermittent computation in the presence of frequent power failures, prior

work proposes saving program state to Non-Volatile Memory (NVM) (e.g., Flash [121] and

Ferrorelectric RAM (FRAM) [63]), preserving program state that is otherwise lost with-

out power. They propose checkpointing volatile program state (e.g., registers and stack) to

NVM, either before the next power failure [7, 8, 77, 121] or periodically at compiler-dictated

points [23, 91, 94, 97, 137]. The most ubiquitous, highest performance, and lowest cost NVM

is Flash. Unfortunately, while many aspects of Flash memory are great for energy harvest-

ing systems, Flash writes are particularly ill-suited for intermittent computation.

Flash writes are much slower and more energy intensive than writes to volatile memory [131].

Additionally, Flash’s limited write endurance results in existing checkpointing schemes killing

it in hours to a year of operation [70]. This is why recent work targets the more esoteric

FRAM-based devices despite the many advantages of Flash-based devices [7, 8, 77, 94, 137].

I observe that Flash retains program state for years, but intermittent computation only

requires retention during short power-off times (e.g., <1s). This work answers the

question, “Is there a way to avoid paying the price for retention guarantees that

intermittent computation does not benefit from?” I answer this question affirmatively

by exploiting the time-dependent volatility of Static Random-Access Memory (SRAM). The

driving observation is that when a microcontroller hits its brown-out voltage (e.g., 1.8V )

and ceases computation, significant charge remains in the system; this remaining charge

leaks away slowly, resulting in a gradual transition from the brown-out voltage to 0V . In

a process known as data remanence, SRAM retains its state as long as voltage is above

its retention voltage (e.g., 0.4V ) [118]. My experiments show that SRAM retains data

for almost an hour after the microcontroller turns off (§2.3.2)—3000 times greater than

common intermittent computation off times. Thus, for the short off times common to

intermittent computing, SRAM acts as a NVM—without Flash’s write penalties.
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To demonstrate the ability of SRAM to serve as a low-overhead NVM for intermittent compu-

tation, I design and implement a library-level, lightweight, in-situ, one-time checkpointing ap-

proach called TOTALRECALL.1 TOTALRECALL checkpoints are in-situ: SRAM data remains in

place, while registers are checkpointed to SRAM. To handle worst-case off-times that expose

SRAM’s volatility, TOTALRECALL calculates a Cyclic Redundancy Check (CRC) over SRAM

and adds it to the in-SRAM checkpoint. Upon recovery, TOTALRECALL verifies the CRC,

falling back to an existing checkpointing approach in the event of a mismatch. I implement

TOTALRECALL on both Flash- and FRAM-based microcontrollers common to intermittent

computation. In experiments with benchmarks from Texas Instruments, TOTALRECALL pro-

vides better-than-FRAM performance on Flash devices—with over 99.999% worst-

case reliability.2 TOTALRECALL improves on the performance of state-of-the-art Flash-based

one-time checkpointing between 230% and 37000%.

This work makes four technical contributions:

• I show that SRAM data remanence can safely store program state for stretching com-

putation across short power cycles; previously, it had been shown to be a way to

exfiltrate secret data [41, 45] and keep track of time [108, 118].

• I design TOTALRECALL, a library-level checkpointing technique that exploits SRAM

data remanence. TOTALRECALL is NVM agnostic and supports existing software with-

out modification (beyond linking against my library).

• I implement TOTALRECALL on both Flash- and FRAM-based MSP430 microcontrollers.

My evaluation using benchmarks from Texas Instruments shows correct operation even

with up to 5-minute off times. TOTALRECALL boosts performance of Flash-based devices
1TOTALRECALL stems from SRAM’s ability to remember it’s power-on state perfectly given short off times.
2My experiments suggest that Flash-based checkpointing will cause Flash writes to fail (i.e., device failure)

before a silent data corruption occurs with TOTALRECALL.
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up to and beyond FRAM-based systems.

• I explore the performance/reliability trade space that TOTALRECALL exposes to de-

signers for hardware and software CRC implementations as well as 16- and 32-bit

CRC implementations. My results show that hardware support for CRC maximizes

TOTALRECALL’s performance and reliability.

2.2 Background

There are several classes of checkpointing approaches in intermittent systems (§2.7), each en-

suring consistent recovery in a different way. Because the more checkpoint heavy continuous

checkpointing approaches are ill-suited for Flash devices due to its limitations (§2.2.2), I fo-

cus on one-time checkpointing approaches. One-time checkpointing approaches [7, 8, 77, 121]

assume some voltage monitoring capability to detect when the energy storage capacitor has

just enough energy to write a checkpoint before the microcontroller turns off. The micro-

controller then stops computation to maintain recovery consistency. This work focuses on

reducing the overhead of one-time checkpointing as used in intermittent computation.

2.2.1 Microcontroller Memory Hierarchy

The microcontrollers deployed in energy harvesting devices [107, 123, 147] are scalar in-order

processors. They employ a flattened memory hierarchy3 consisting of two types of memory:

• Static Random-Access Memory (SRAM): main memory: holds transient pro-

gram data (e.g., heap and stack). Positives include fast reads and writes, low energy,
3FRAM devices support a hierarchical memory model where SRAM acts as a cache for FRAM [68]. This

reduces volatile state to architected state. This organization decreases checkpointing overhead, but sacrifices
common-case performance [78]. Thus, the default is a Flash-like, flattened, model.
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Flash [65] FRAM [66] SRAM
NVM size 256 KB 256 KB

Cost $6.23 $6.33
SRAM 16 KB 8 KB

Max freq. 25 MHz 16 MHz
Dhrystone 8.59 ms 13.52 ms
Released 2001 2013

Read freq. 25 MHz 8 MHz > 25 MHz
Write freq. .036 MHz 8 MHz > 25 MHz
Endurance 104 1015 ∞

Min V. 2.2 V 1.8 V < .9 V [59]
Byte erase/program No Yes Yes

Table 2.1: Comparison of Flash and FRAM microcontrollers from Texas Instruments, tar-
geting the same NVM size and price point.

and byte addressable. Negatives include small size (e.g., 512B) and volatility, i.e., it

eventually loses state without power.

• Non-Volatile Memory (NVM): permanent data store: holds stable program data

(e.g., code and constants). The positive is its large size (e.g., 256KB). Negatives include

being slower and higher energy than SRAM. Note that different NVMs exacerbate or

diminish these trade offs.

2.2.2 NVM Choices

Given that checkpointing is a fundamental part of intermittent computation, NVM selec-

tion greatly impacts intermittent computation overhead. Commodity microcontrollers offer

two choices of NVM: either Flash or FRAM. To compare and contrast Flash and FRAM

with respect to energy harvesting, I select representative microcontrollers from a popular

online electronics distributor. I select Texas Instruments MSP430 microcontrollers to facil-

itate cross-device performance comparison and because that is the microcontroller used by

deployed energy harvesting platforms [107, 123, 147]. Since NVM size is the primary driver

of cost and technology, I fix NVM size at 256KB. From the remaining microcontrollers, I
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select the wider voltage range (1.8–3.6V ) as that enables longer on-times. From there, I

limit the results to in-stock parts available in small quantities. For each NVM type, I select

the cheapest device as the representative microcontroller. Table 2.1 highlights the tradeoffs

between the representative microcontrollers, along with a comparison to SRAM.

Flash benefits: The green cells in Table 2.1 highlight where Flash outperforms FRAM.

The most important benefit of Flash is its ubiquity: Flash-based MSP430s have a decade

lead over FRAM-based MSP430s. Flash devices continue to outsell FRAM devices today

as only one vendor sells FRAM-based devices, while dozens sell Flash-based variants. For

example, the online distributor lists over 64,000 Flash-based microcontrollers, while only

777 options exist for FRAM variants. In addition to availability, Flash devices also have a

performance advantage over FRAM-based devices. Specifically, Flash reads are 3x faster,

provide 2x the SRAM, and a 62% higher clock frequency. These individual advantages add

up to a 57% improvement in the Flash device’s Dhrystone score over the FRAM device’s.

Thus, while one-time checkpointing approaches mesh well with FRAM, ignoring high-

performance solutions for Flash-based devices leaves most current and future

deployed systems unserved.

Flash drawbacks: Despite the availability and performance advantages of Flash, it has

limitations that cause recent energy harvesting systems to move to FRAM-based devices [94,

107, 137, 147]. Flash’s key disadvantage centers on writes. Programming Flash (i.e., writ-

ing) is a uni-directional, energy, and time-intensive process called hole punching. In hole

punching, you increase the voltage of a Flash cell to force charge across a dielectric, chang-

ing the state of the cell from a 1 to a 0. This requires a higher starting voltage (e.g., 2.2V )

and sufficient time—and energy—to pump the voltage up to the required level (e.g., 12V ).

Changing any cell’s value back to a 1 requires an erase—which only occurs at segment gran-
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ularity (e.g., 512B): updating a single word in Flash requires copying the entire segment to

SRAM, erasing the segment in Flash, then writing the modified segment back to Flash. This

makes Flash writes incredibly costly as Table 2.1 indicates that writing alone is 200x slower

than FRAM.

Another write-related problem often overlooked in previous work is Flash’s limited write

endurance [70]. Each program/erase cycle ages the Flash cell, making it harder to pro-

gram/erase in the future. This means that the frequent checkpoints required to support

intermittent computation quickly kill Flash—taking the microcontroller with it. Thus, it

is clear that without an alternative to checkpointing to Flash, the vast majority of micro-

controllers will not support intermittent computation and the most advanced continuous

checkpointing approaches are a non-starter. The goal of this work is to achieve FRAM-like

checkpointing performance and lifetime on the more ubiquitous and performant Flash-based

devices.4

2.3 Motivation

To enable low-overhead and long-term intermittent computation on Flash-based devices, I

exploit SRAM’s data remanence to allow it to serve as a NVM. This approach stems from

two observations: (1) the off times of intermittent computation are short5 and (2) SRAM

on microcontrollers retains data for a relatively long time. Given these observations, I see

an opportunity to tradeoff unnecessarily long data retention guarantees for a increase in

4As emerging NVM technologies mature and approach Flash-based devices in terms of frequency, read
latency, features, and availability, the whole-memory non-volatility guarantee provided by emerging NVM
technologies is preferable to the added complexity of the mixed-volatility offered by Flash+TOTALRECALL.

5While many energy harvesting devices will go long periods without power (e.g., smart cards), I note
that these long off times demarcate individual, unrelated, computations; I differentiate these workloads from
those targeted by intermittent computation. Previous work makes a similar observation about temporal
locality of results and intermittent computation [37].
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Energy Source Source Max Off Time (s) SRAM Suitable
10µF , 47µF

RF [49, 92, 121] 10 < 80C, 3
Thermal [92] 14 < 75C, 3
Piezoelectric [92, 127] 2 3, 3
Solar* [49, 92] 300 < 25C, < 55C

Table 2.2: Off times in various energy harvesting systems along with the maximum ambient
temperature that affords 100% SRAM data retention. *Solar-powered systems experience
longer off times at night, but this is (predictable) power loss—not intermittent computation.
3 represents that the temperature is above the device’s maximum operating temperature of
85C.

performance and lifespan for Flash-based intermittent computing devices.

2.3.1 Intermittent Off Times are Short

The first observation driving my approach is that the off times common to intermittent com-

putation are short. To validate this observation I explore the off times of energy harvesting

platforms across a range of energy sources. This task is complicated by the fact that previ-

ous work focuses on on-times due to its reliance on the long-term data retention guarantees

of NVMs and because of the on-time’s impact on checkpointing overhead. Fortunately, in

providing on-time data, they also provide enough data to approximate off times. Table 2.2

presents a summary of the off times from different energy sources. From this summary, I

make two observations: (1) intermittent off times tend to be of the same magnitude as on

times—i.e., short—and (2) many long off times are predictable and incongruent with the goal

of intermittent computation due to temporal locality. Thus the data retention guarantee of

traditional NVMs is overkill for intermittent computation.
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2.3.2 SRAM has Time-dependent Volatility

The second observation driving my approach is that after a system ceases computation due to

power failure, the remanent charge keeps the device’s voltage higher than SRAM’s Data Re-

tention Voltage (DRV) for some time. This is because SRAM DRV, which is ∼0.4V [55, 116],

is much lower than the operational voltage of the microcontroller (e.g., 1.6V for the repre-

sentative MSP430s).6 When supply voltage falls below the minimum operating voltage of

the microcontroller, the power consumption drops drastically as transistors stop switching;

power drain is now dominated by leakage current in the MCU and surrounding circuitry.

While this leakage eventually reduces the supply voltage below the SRAM DRV, both extrin-

sic (i.e., decoupling capacitors and PCB trace capacitance) and intrinsic (e.g., transistor and

trace capacitance) sources of capacitance prevent the supply voltage from dropping instan-

taneously. The energy storage capacitor described in §2.2 dominates the charge remanence

effect; previous work on SRAM remanence supports this observation [118].

To empirically determine how long the remanent charge in microcontrollers allows SRAM

to retain state after a power failure, I perform real-system experiments using a Flash-based

MSP430. For this experiment, I first initialize all SRAM cells to a known value, then

disconnect power for a set time, and finally, read back the SRAM data, checking for bit flips.

Because SRAM fails bi-directionally—some cells tend to fail into a 0 state, while others fail

into a 1 state—I run two trials at each off time, writing all 1’s then all 0’s [53]. I perform a

binary search to determine the maximal off time where full SRAM state retention occurs.

Figure 2.1 shows the retention time of my MSP430 microcontroller across a range of tem-

peratures and the two energy storage capacitor sizes common to deployed energy harvesting

devices [107, 123]. I vary temperature (using a Test Equity 123H thermal chamber) and
6Past work on low-power embedded systems has explored using this effect to reduce leakage in sleep

modes by clamping supply voltage down to SRAM’s DRV [76], which immediately minimizes leakage at the
cost of discharging the capacitance that enables SRAM’s time-dependent non-volatility.
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Figure 2.1: The time before the first SRAM cell in a microcontroller loses state varies with
ambient temperature and capacitor size.

capacitance (via power rail decoupling capacitors) as those two variables dominate charge

leakage and by extension SRAM data retention time. To contextualize these results, I add

the maximum supported temperature for a given energy source and capacitor size combina-

tion in Table 2.2. In this work, I design and implement a system that reliably uses

SRAM as a low overhead, long lifetime, NVM for the short off times common to

intermittent computing, falling back to existing checkpointing to support longer, power

off, scenarios.
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2.4 TOTALRECALL Design

I design TOTALRECALL, an efficient checkpointing technique for intermittent computing on en-

ergy harvesting devices. TOTALRECALL eliminates costly NVM checkpoints by reliably retain-

ing program state in SRAM. The pervasiveness of SRAM makes TOTALRECALL deployable re-

gardless of NVM technology. The library-based design of TOTALRECALL makes it deployable

to current and future commercial off-the-shelf microcontrollers, without software or hard-

ware modification. When deployed on Flash microcontrollers, TOTALRECALL enables system

designers to take advantage of the benefits of Flash (Table 2.1), without its checkpointing-

induced high write/erase overheads and limited lifetime. Much of TOTALRECALL follows from

previous one-time checkpointing systems [7, 8, 77, 121], except that SRAM data remains in

place. Keeping SRAM data in place creates the central challenge that I address in this

section: how does TOTALRECALL know when SRAM acted as a NVM while the power was

off?

2.4.1 Challenge: Detecting Volatility

My experiments with SRAM remanence (§2.3.2) show that SRAM acts as a NVM given

normal off times, but becomes volatile memory given sufficiently long off times. While ex-

periments show that SRAM gradually transitions from completely non-volatile to completely

volatile as the time off increases, I assume that any bit loss constitutes complete volatility.

Thus, my goal is to design a mechanism to detect if any bit has changed during power loss.

Below I explore the SRAM volatility detection design space.

Do nothing: The highest performance, but lowest reliability, solution is to assume SRAM

retains all data. This incurs near-zero overhead (only registers are copied to SRAM) for
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off times that stay within SRAM’s non-volatile range; but leads to program failure for

unexpectedly long off times.

Canary: To add some cheap error detection, I could add a canary value to my in-SRAM

checkpoint. By checking if the canary value changed at power on, I would know if SRAM lost

state. Unfortunately, the SRAM cells that fail first and the direction of failure is dictated

by manufacturing-time process variation—hence each device is different [53, 54]. Thus, a

canary only detects SRAM state loss—not retention.

Enrollment: A viable solution that has a low run time overhead and is reliable is to

pre-characterize devices to determine where to place canary values in each device’s SRAM.

Characterization follows the same binary search procedure of my remanence experiments

(§2.3.2), but at a finer granularity (to tease-out the specific SRAM cell that fails first).

Characterization works because SRAM cells lose state in a predictable order that is robust

against temperature and voltage changes [51]. I do not choose this solution because it limits

the generality of TOTALRECALL; otherwise, this is the optimal solution.

Redundancy: Another approach that takes advantage of the unique failure pattern of

SRAM is dual modular redundancy: duplicate all words in SRAM and after powering on,

check for disagreement. While this provides stronger reliability guarantees than doing noth-

ing or using canaries without enrollment, redundancy does not provide significant guarantees

in the face of frequent power failures. Additionally, this approach has high memory overhead.

ECC: Error Correcting Codes (ECCs) are commonly used to protect DRAM memory.

ECC is a poor fit for the bursty errors encountered by SRAM volatility. For example, the

MSP430’s word size is 16-bits; adding a parity bit to each data word incurs 6.25% overhead,
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10µF 47µF
Temp. (C) 16-bit 32-bit 16-bit 32-bit

Office 20 3.7 239K 17.2 1,126K
Death Valley 55 0.8 54K 3.9 256K

Table 2.3: Worst-case time, in years, until a silent data corruption.

but can only detect a single bit flip. Upgrading to 5-bits, guarantees two-bit error detection,

but incurs a 31.15% overhead. In the average case, my design requires 4-bits per word of

detection.

Hash function: The final solution that I rule out is employing a hash function. Using

a hash function trades a huge performance loss for near-perfect reliability. To use a hash

function, you would feed it the entire contents of SRAM and store the resulting digest in

SRAM, as part of a checkpoint. Upon power on, you recalculate the digest and verify against

the stored digest. The likelihood that the two digests match, but the SRAM lost state is

less than 1 in 100 trillion. This reliability is overkill for the duty cycle of intermittent

computation and expensive in terms of run-time overhead.

2.4.2 My Solution: Cyclic Redundancy Checks (CRC)

My goal is to maximize system performance without (practically) compromising data in-

tegrity. To this end, I find a solution that handles error bursts like hash functions, is

designed with random errors in mind like ECC, but balances performance and integrity.

Ideally, I want the cheapest solution that provides just enough data integrity. The solution

that meets these requirements is a Cyclic Redundancy Check (CRC); CRCs are simple, fast,

and provide tunable data integrity that allows system designers to trade performance for

integrity. Another benefit of CRC is that, due to its prevalence (e.g., the WISP platform

makes heavy use of CRC [123]), many microcontrollers provide hardware support for it.
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Cyclic Redundancy Checks (CRCs) are error-detecting codes common in many communica-

tion and data storage applications to provide a high degree of confidence that a data packet

is error-free. To verify a data packet, the CRC algorithm divides the data packet by a

pre-determined generator polynomial using repeated shift and XOR operations. The sender

stores/transmits the data packet along with the remainder of this division; when the data

must be verified, the message is divided by the generator polynomial again. If the calculated

remainder matches the stored remainder, the receiver can assume with a high degree of con-

fidence that the message is correct. If the remainders do not match, the data is assumed to

be corrupted. The shift and XOR operations used to calculate CRCs are simple to implement

in both software and hardware.

Besides being efficient, CRCs have high error detection capability. A CRC is guaranteed to

detect G bits of errors, where G depends (roughly) on the bit-width of the CRC; a 16-bit

CRC guarantees detection of up to three flipped bits anywhere within the data, while a

32-bit CRC guarantees detection of up to five flipped bits [86]. For errors corrupting more

bits than these, CRCs provide probabilistic error detection of 1/2m, where m is the width of

the CRC. Such a multi-bit error is undetected only if the checksum of the corrupted and un-

corrupted data match exactly. The probability of undetected corruption is further reduced

because CRC guarantees detection of an odd number of bit flips and there is a 50% chance

that SRAM fails in the direction of the value stored in the cell. Assuming each power failure

is just long enough to corrupt data (see Figure 2.1), I calculate CRC’s expected time to

first undetected corruption for several energy storage capacitor sizes and CRC bit-widths.

Table 2.3 presents the results of this calculation.
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Algorithm 1 In-situ SRAM checkpoint routine.
1: ...Copy all CPU registers...
2: SRAM_Ptr = SRAM_BOTTOM
3: // CRC everything in SRAM but CRC value
4: while SRAM_Ptr ̸= SRAM_TOP do
5: // Next input to CRC engine
6: CRC_Input← *SRAM_Ptr
7: SRAM_Ptr = SRAM_Ptr + 2
8: end while
9: // Save CRC result to top of SRAM
10: *SRAM_TOP← CRC_Result
11: ...Power off...

2.4.3 TOTALRECALL Overview

Like previous one-time checkpointing approaches [7, 8, 77, 121], TOTALRECALL creates a

checkpoint immediately before power loss. TOTALRECALL performs all checkpointing ac-

tions in software by implementing them in an interrupt service routine associated with an

interrupt-enabled voltage supervisor that monitors the system’s energy storage capacitor.

The checkpoint contains all architected state (e.g., general-purpose registers) and a CRC

checksum computed from all other SRAM data. Note that the registers themselves are im-

plemented using SRAM, thus they may retain data after power loss; however, TOTALRECALL

still copies them as part of the checkpoint for generality, as some systems tie registers to

hardware resets to ensure a known startup state. Unlike previous one-time checkpointing

approaches, TOTALRECALL’s checkpoints leave program data in-place in SRAM—eschewing

costly Flash writes. After completing the checkpoint, the microcontroller powers-off to avoid

inconsistent recovery [8, 120].

Upon power-on, TOTALRECALL’s recovery routine gets invoked. It first recomputes the CRC

over SRAM and compares it to the recorded checksum. In the common case when the old and

new checksums match, TOTALRECALL restores the checkpointed register values from SRAM

and then resumes program execution. In the uncommon case that the checksums do not

match, TOTALRECALL restarts the user program from the beginning or from a conventional
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Algorithm 2 In-situ SRAM checkpoint recovery routine.
1: SRAM_Ptr = SRAM_BOTTOM
2: while SRAM_Ptr ̸= SRAM_TOP do
3: // Next input to CRC engine
4: CRC_Input← *SRAM_Ptr
5: SRAM_Ptr = SRAM_Ptr + 2
6: end while
7:
8: if *SRAM_TOP ̸= CRC_Result then
9: // SRAM corruption detected
10: ...restart or load NVM checkpoint...
11: end if
12:
13: ...Restore all CPU registers...
14: Restore stack pointer
15: ...execute initialization callback, if necessary...
16: Restore status register
17: Restore program counter

checkpoint in NVM. While I envision more sophisticated ways of handling long off times,

that is not the focus of this work.

2.4.4 Checkpoint Layout and Creation

TOTALRECALL’s checkpointing procedure stores the checkpoint in a static location reserved

at the top of SRAM. This simplifies CRC processing, makes the checkpoint and restore code

more efficient, and enables TOTALRECALL to seamlessly integrate with existing programs

at link time. This reserved address range is small (e.g., 40 bytes) because TOTALRECALL’s

checkpoint only contains register values, which are few in number, and a checksum. To

prevent the checkpoint content from being inadvertently overwritten by the user program, I

modify the memory map used by the linker script to start the stack just after my checkpoint

location. By doing this, TOTALRECALL is able to integrate with existing programs as late as

the linker. Algorithm 1 provides the details of TOTALRECALL’s checkpointing routine.
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2.4.5 Restoring from Checkpoints

On power up, TOTALRECALL’s recovery routine executes before any platform initialization

or user code executes. Algorithm 2 details TOTALRECALL’s recovery routine. TOTALRECALL

first re-calculates the checksum over SRAM (excluding the CRC value) and compares it to

the checksum stored at the top of the in-SRAM checkpoint. When the checksums match,

TOTALRECALL repopulates the register file, restores the stack pointer, and executes any

peripheral initialization function that the user program registered (by writing its function

pointer to a reserved space in the checkpoint area), finally passing control to where the

program left off (by restoring the status register and the program counter).

Checksum mismatches result from two situations: (1) no checkpoint exists (i.e., this is the

first power on event) or (2) the data in SRAM was lost during an a unexpectedly7 long power

cycle. In the first case, TOTALRECALL starts execution from the beginning of the program.

In the second case, TOTALRECALL looks for a checkpoint in Flash, restoring it if it exists,

otherwise restarting the program.

2.5 TOTALRECALL Implementation

To validate the applicability of TOTALRECALL to energy harvesting devices and intermit-

tent computation, I implement and evaluate it on two Texas Instruments microcontrollers:

MSP430G2553 and MSP430FR6989. Table 2.4 summarizes the relevant aspects of each de-

vice. From a high level, these devices represent existing energy harvesting devices [107, 123,

147] and cover both Flash and FRAM NVM options. From a low level, I select these specific

devices because they are available as part of development boards.

7For expected long off times (e.g., sunset with a photovoltaic), write a checkpoint to Flash instead.
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Flash FRAM
Read freq. 25 MHz 8 MHz
Write freq. .036 MHz 8 MHz
Endurance 104 1015

Min V. 2.2 V 1.8 V
Byte erase/program No Yes

Table 2.4: Microcontrollers that I implement TOTALRECALL on.

Power control board: The development boards have the same debug interface, which

enables me to use the same power control board across both boards. I approximate energy

harvesting conditions using a custom daughter board compatible with both MSP430 devel-

opment boards, shown in Figure 2.2. Testing intermittent computation systems is difficult

because energy harvesting environments are, by nature, unpredictable and difficult to repli-

cate [49]. The power control board allows me to test TOTALRECALL and baseline systems in

a consistent, repeatable environment. A microcontroller on the daughter board controls a

Digital-to-Analog Converter (DAC) capable of powering the MSP430-under-test and transis-

tors to isolate the MSP430-under-test when power is disconnected to better imitate energy

harvesting circuit behavior.

Baseline implementation: To serve as a baseline for my evaluation, I implement the

state-of-the-art one-time checkpointing approach (i.e., Hibernus [8]) on both microcontrollers.

Being one-time approaches, the systems take a checkpoint when triggered by the interrupt

indicating imminent power loss. A checkpoint consists of writing all registers and SRAM

data to a static, reserved, location in NVM. Compare this to TOTALRECALL’s checkpoints,

which leave SRAM data in place, and only copies registers.
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Figure 2.2: The experimental setup with power-control daughter board (top) and the
MSP430G2553 Launchpad (bottom).

2.5.1 CRC Implementation

The main question that I answer in the evaluation (§2.6) is whether taking a CRC is more

efficient than copying SRAM to NVM. TOTALRECALL incurs near-zero data transfer overhead

because it does not access slower NVM and only needs to copy register data (40 bytes) to

SRAM. Instead, the primary source of overhead is calculating the CRC checksum of SRAM

data. I evaluate four different implementations of the SRAM integrity check: two table-based

software routines applicable to any device, and two routines taking advantage of hardware

CRC support common to modern microcontrollers.
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Software CRC16/32: The software CRC approach is independent of hardware support,

thus applicable to any system. My software CRC implementation is optimized for speed

based on a memoization of CRC divisions; platforms with limited code space could sacrifice

checkpoint and recovery speed for reduced code size by removing the CRC table and directly

calculating the CRC remainder. Algorithm 3 shows the software CRC16 algorithm, adapted

from Texas Instruments example code [69]. Not shown is a software implementation of

CRC32. Software CRC32 is similar to CRC16, but with added operations to deal with 32-

bit numbers on a 16-bit microcontroller. Experiments show that CRC32 takes roughly 1.6x

the time of CRC16—but increases reliability (Table 2.3).

Hardware CRC16/32: Many low-power microcontrollers which transmit or receive data

include hardware dedicated to calculating CRC checksums. The programmer writes data to

the input register of the CRC engine, sequentially, until all data is processed; the updated

checksum is available the next CPU cycle. I implement TOTALRECALL using both the CRC16

and CRC32 engines available on the MSP430FR6989 to measure the overhead improvement

possible when CRC hardware is available. My results show that hardware acceleration

increases checkpoint/recovery speed by 342% when compared to the software implementation

of the CRC16 and 561% compared to the software CRC32.

2.5.2 Additional Challenges

I encountered a number of challenges implementing my design, primarily related to cir-

cumventing embedded system startup routines that assume no valuable data is in SRAM

immediately after power-on. Startup routines such as crt0 (responsible for setting up the

C runtime environment) make function calls and allocate variables at the top of the stack

because they run before anything else on the system. Because the system writes checkpoints
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Algorithm 3 Software CRC16 routine.
1: MASK ← 0xFF00
2: CRC ← 0x0
3: P_TABLE ← &CRC_TABLE
4: P_SRAM ← SRAM_BOTTOM
5: while P_SRAM ̸= SRAM_TOP-2 do
6: INDEX ← CRC[7:0]
7: INDEX ← *P_SRAM xor INDEX
8: P_SRAM ← P_SRAM + 1
9: INDEX ← INDEX + INDEX
10: INDEX ← INDEX + P_TABLE
11: CRC ← CRC and MASK
12: CRC ← *INDEX xor CRC
13: end while
14: return CRC

to a static location at the top of the stack, TOTALRECALL must take care to avoid overwriting

crt0 and other runtime data during the checkpointing process.

Rather than re-run the runtime initialization code on every startup (which increases check-

point recovery overhead) or re-instrument startup code to accomodate SRAM checkpoints

(which increases time to deployment because startup routines are platform-specific), I mod-

ify the linker script to make the space used for storing checkpoint data unavailable to the

compiler. This reduces the total available RAM space by the size of the checkpoint even if no

checkpoints are taken; I consider this an acceptable penalty because register file checkpoints

are small.

2.6 Evaluation

To validate TOTALRECALL’s effectiveness and compare against the state-of-the-art one-time

checkpointing approach, I evaluate TOTALRECALL and Flash-based one-time checkpointing

using a set of benchmarks written for the MSP430 by Texas Instruments [58]. These bench-

marks, shown in Table 2.5, include common embedded system applications and CPU per-
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Benchmark Size (B) SRAM Usage (B) Approximation?
FIR Filter 3572 254 Yes
Dhrystone 1285 474 No
Whetstone 16136 468 Yes
Quicksort 864 362 No
Factorial 1532 44 No
Matrix Mult. 1536 122 Yes

Table 2.5: Memory usage information for several benchmarks on the MSP430FR6989.

formance benchmarks. I also include quicksort and factorial benchmarks to test against

stack-intensive programs. Table 2.5 includes the memory usage of the benchmarks, because

one potential optimization for TOTALRECALL is to only compute the CRC over SRAM in

use. This optimization is especially useful for programs that do not use dynamic memory.

Table 2.5 also details which benchmarks are amenable to approximate computing techniques

as I foresee that TOTALRECALL’s use of SRAM as best-effort approximate storage has poten-

tial synergy with approximate computing systems, although I leave this line of research for

future work.

I compile all benchmarks using the open-source MSP430 GCC toolchain developed by Texas

Instruments [72] with -Os (optimization for size) enabled. I use the results of this evaluation

to answer the following questions:

1. Does TOTALRECALL correctly stretch program execution across short yet frequent power

cycles?

2. Can TOTALRECALL detect and handle when unexpectedly long power cycles expose

SRAM’s volatility?

3. How does TOTALRECALL’s run-time overhead compare to existing one-time checkpoint-

ing approaches?
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2.6.1 Correctness

Figure 2.3 shows a test of the system working in a typical energy harvesting environment.

The supply voltage to the microcontroller varies as TOTALRECALL extends the quicksort

benchmark across five power cycles on the MSP430G2553. Figures 2.3 and 2.4 illustrate

three stages of the power failure the microcontroller experiences; these traces are taken on

hardware using the Picoscope 2208B Mixed Signal Oscilloscope (MSO) [129]. Before the

device disconnects from the power source, the supply voltage is steady at 3.3V . Immediately

after disconnecting power, the microcontroller continues execution, but rapidly drains the

energy storage capacitor until Vdd reaches the brown-out voltage (1.5V ). With the micro-

controller not executing, Vdd drops slowly due to charge leakage from the microcontroller

and surrounding development board. The rate of Vdd drop can be unpredictable depending

on the behavior of power-hungry peripherals such as radios that share the power supply

with the MCU. Hardware-oriented solutions such as energy federation [50] can mitigate this

problem by intelligently choosing when to connect peripheral supply capacitors to the MCU

power rail, reducing their impact on SRAM remanence time. This gradual drop in supply

voltage allows data to remain in SRAM as it never goes below SRAM’s data retention volt-

age. Thus, in the case of Figure 2.3, quicksort successfully completes execution after five

power cycles. I perform similar experiments with all benchmarks, validating TOTALRECALL’s

ability to stretch execution across frequent power cycles. I conduct all experiments at 20C

to reduce the impact of operating temperature variation on SRAM retention time.

What about when longer power cycles cause data loss? To show that TOTALRECALL can

detect and handle cases where SRAM becomes volatile, I create data loss by driving Vdd

below SRAM’s data retention voltage. This causes some SRAM cells to lose their state. I

perform variations of this experiment down to 0V and by disconnecting from power for a

long time, instead of directly driving Vdd. In all cases, the recovery routine detects the data
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Figure 2.3: Extending the quicksort benchmark across five power cycles. Channel A shows
supply voltage and channel B shows the status of a GPIO pin that is driven high when the
program completes with correct output.

corruption and restarts the program from the beginning rather than continuing with faulty

data.

2.6.2 TOTALRECALL’s Overhead

Execution-time Overhead: TOTALRECALL correctly extends program execution across

power cycles, but how does its performance compare to state-of-the-art Flash-based check-

pointing solutions? Does it approach FRAM’s overhead? To compare TOTALRECALL’s over-

head to Flash- and FRAM-based checkpointing systems, I time each checkpoint recording/re-

covery routine on the experimental hardware setup described in §2.5. Figure 2.5 shows these

results as percentages of the total on-time spent in the checkpointing and recovery rou-
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Figure 2.4: MSP430G2553 Vdd decay after power is disconnected. Flash checkpointing systems must
begin writing a checkpoint well above the minimum Flash write voltage, wasting energy. TOTALRECALL
allows computation to continue until just before Vdd reaches the brown-out voltage and uses the remaining
energy in the system to retain SRAM state.

Figure 2.5: Comparison of one-time checkpointing system overheads on platforms with different energy
storage capacitor sizes and clock frequencies. Flash+Erase represents overhead when the Flash page must be
erased before writing the checkpoint; SRAM-based checkpoint systems are divided by CRC implementation
(hardware or software) and bit-width.
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tines at each capacitor, frequency, and device combination. An overhead result >=100%

indicates that the checkpointing system does not support useful computation in the given

configuration, because the time needed to record and recover is greater than the available

time in a single power cycle. In a system with a 47µF capacitor operating at 1MHz, the

hardware CRC implementation of TOTALRECALL extends program execution with an aver-

age overhead of 1.0% compared to the 27% overhead of the Flash+Erase8 system under the

same conditions—a 96% reduction in overhead. TOTALRECALL also scales better with clock

speed, supporting 16MHz execution with an overhead of 0.8%, while the fixed-time Flash

write+erase incurs nearly 300% overhead. In summary, not only does TOTALRECALL out-

perform Flash-based checkpointing, it enables intermittent computation on a wider

array of system configurations.

Checkpoint Voltage Guard Bands: In addition to faster checkpoint and recovery rou-

tines, TOTALRECALL reduces overhead by increasing the total charge available for useful

calculations. One-time checkpointing systems use the concept of a voltage ”guard band”,

which designates the minimum supply voltage at which the system must stop useful calcu-

lations and begin writing the checkpoint to ensure that the checkpoint is completely written

before power is lost. Figure 2.4 shows a trace of the MSP430G2553 supply voltage dur-

ing a power failure. Flash checkpointing systems must finish writing a checkpoint before

Vdd reaches 2.2V , the minimum voltage required to guarantee successful Flash writes on

MSP430-family devices [61]. Because Flash writes are slow, the Flash checkpoint routine

must begin well before Vdd reaches 2.2V . For example, on similar hardware, the Flash-

based approach Mementos [121] sets the beginning of the checkpoint guard band between
8Flash-based systems must spend time and energy to erase data. They can do it every power cycle if there

is sufficient energy (Flash+Erase) or they devote an entire power cycle to an erase operation when there is
insufficient energy to both erase and write in a single power cycle. Thus, real deployments of Flash-based
checkpointing systems are not able to achieve the overheads shown in Flash due to the need to eventually
erase.
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2.8V and 2.6V . Given that the MSP430G2553 guarantees code execution between 3.6V and

1.8V , Flash checkpointing systems waste 45% to 55% of the otherwise usable charge held by

the capacitor.

TOTALRECALL maximizes energy use because it is not limited by the 2.2V Flash write min-

imum supply voltage; it exploits the microcontroller’s full voltage range. Based on my

test platform of the MSP430G2553 with the stock 11µF capacitor running at 1MHz, I

use Equation 2.1 to determine that TOTALRECALL can delay taking a checkpoint until Vdd

reaches 1.837V . This leaves 98% of the total useful capacitor charge available to the system

for useful computation.

Vguard = (

Checkpoint time︷︸︸︷
∆t ∗ I︸︷︷︸

Active current

/

Total capacitance︷︸︸︷
C ) + Vlow︸︷︷︸

Min. voltage

(2.1)

TOTALRECALL on FRAM Platforms: FRAM and other emerging NVM technologies such

as Spin-Transfer Torque Magnetoresistive RAM (STT-MRAM) are potential alternatives to

Flash on intermittent computing platforms due to their lower write currents, higher write

endurance, and lower write latency. The state of the art for one time checkpointing systems

uses FRAM-based microcontrollers that enable NVM-based checkpoints with approximately

15-20% time and energy overhead [7, 8]. I implement TOTALRECALL on the FRAM-based

MSP430FR6989 to compare its performance to FRAM-based checkpoints. My evaluation in

Figure 2.5 shows that TOTALRECALL, with a software-based CRC implementation, enables

checkpointing performance competitive with state-of-the-art FRAM checkpointing. On a

system with a 10µF capacitor operating at 1MHz, TOTALRECALL using a software CRC32

implementation introduces 27.7% overhead compared to FRAM’s 19.5% overhead. However,

TOTALRECALL’s capacity for hardware acceleration allows it to outperform FRAM-based

checkpoints on devices that include hardware CRC support: on the same system, but us-

ing hardware CRC support, TOTALRECALL incurs 4.5% overhead—a 77% reduction. These
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Figure 2.6: Power cycles required to complete the FIR benchmark normalized to continuous
execution. Flash+Erase represents erasing every other power cycle.

results highlight TOTALRECALL’s potential for high speed, NVM-agnostic checkpoints.

2.6.3 TOTALRECALL Practical Considerations

To gauge TOTALRECALL’s practical impact on intermittently executed programs, I determine

the number of power cycles required to complete a benchmark program running on the
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MSP430G2553. I model the total active time available as the time required to drain a

capacitor from the maximum operating voltage (3.6V ) to the minimum voltage (2.2V for

Flash and 1.8V for SRAM) while drawing the typical active mode current at the specified

clock frequency. Figure 2.6 depicts the number of power cycles required to complete the

benchmark, normalized to the power cycles required if there were no checkpointing overhead

(i.e., 100% of the active time was dedicated to running the user program). Operating at

1MHz with a 10µF capacitor, TOTALRECALL reduces the number of power cycles (and thus

the total energy) required to complete the benchmark by over 7x compared to Flash-based

checkpointing, while enabling intermittent computation at higher clock speeds and with

smaller energy storage capacitors.

2.7 Related Work

TOTALRECALL represents a shift in how intermittent computation systems maintain state

across power cycles. All previous work, because it assumes instant loss of volatile state,

involves storing, in the form of a checkpoint, volatile state (e.g., registers and SRAM) to

non-volatile memory (e.g., Flash and FRAM). Two classes of checkpointing approaches exist:

one-time checkpointing approaches that store all volatile state just before power loss and

continuous checkpointing approaches that are power-failure-agnostic and make many, smaller

checkpoints that ensure consistent recovery. In this section, I discuss the progression of

advancement in each approach class, including a look at work that extends intermittent

computation beyond the microcontroller.
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2.7.1 One-time Checkpointing

Mementos [121] is the first system to tackle the problem of stretching computation across

frequent power cycles. Mementos relies on periodic measurements of the system’s energy

storage capacitor, coupled with an energy model, to estimate how much energy remains.

The goal is to commit a checkpoint just before power failure. While Mementos works well

when programs treat non-volatile memory as read-only, follow-on work exposes state incon-

sistency when programs modify non-volatile state during post-checkpoint execution [120].

The problem is that Mementos allows for uncheckpointed work to occur. If uncheckpointed

work updates both volatile and non-volatile memory, only the non-volatile memory updates

persist, creating an inconsistent state upon recovery.

QUICKRECALL [77] addresses Mementos’s correctness issue by storing all program data in

non-volatile memory; effective, but expensive due to non-volatile memory’s speed limita-

tions. Hibernus [7, 8] solves the problem in a different way: through the introduction of

guard bands and hibernation. A guard band is a voltage threshold that represents the

amount of energy required to store the largest possible checkpoint to non-volatile memory

in the worst-case device and environmental conditions. Execution occurs only when volt-

age is above the guardband threshold. Beyond correctness, Hibernus also improves upon

Mementos in terms of performance. To avoid the overhead of polling the voltage of the

energy storage capacitor’s voltage and the risk of energy estimation, Hibernus leverages the

Analog-to-Digital Converter’s (ADC) interrupt mechanism. Hibernus configures the ADC

to fire an interrupt when voltage dips below a the guard band threshold. More recently,

ReplayCache [146] transparently extends one-time checkpointing systems to support volatile

data caches supporting NVM by replaying potentially unpersisted stores following a power

loss. While ReplayCache is implemented at the software level and targets existing volatile

data caches, WL-Cache [22] modifies the cache at the architectural level to automatically
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flush dirty cache lines to NVM and tune cache behavior to energy availability.

As Hibernus represents the most correct and highest performance one-time checkpointing

system suitable for our uplatforms, TOTALRECALL uses it as the baseline for comparison.

As my evaluation shows (§2.6.2), for the FRAM-based systems targeted by Hibernus and

QUICKRECALL, guardbands are reasonable due to the low time and energy cost of FRAM-

based checkpoints. But, the time and energy costs of Flash-based checkpoints make adapt-

ing Hibernus’s approach to the Flash-based systems targeted by Mementos prohibitively

expensive. TOTALRECALL, by keeping checkpoints in-place in SRAM, enables it to provide

improved performance—with smaller guardbands—for both Flash- and FRAM-based inter-

mittent computation systems.

2.7.2 Continuous Checkpointing

The more recent continuous checkpointing systems eschew taking a single, large, checkpoint,

for many, smaller, checkpoints. The driving observation that underlies such approaches is

that the short on-times of intermittent computation limits the amount of state changed

during a power cycle. Thus, the checkpoint needed to track such a change is also small.

The challenge is avoiding the incorrectness of Mementos that occurs due to post-checkpoint

execution [120]. To avoid state inconsistency during recovery, continuous checkpointing sys-

tems must track program execution at a fine-grain, inserting checkpoints where consistency

demands. Researchers approach this problem from two directions: compiler tracking and

hardware tracking. Note that no matter the execution tracking approach, continuous check-

pointing is incompatible with Flash-based devices due to the time and energy overheads of

Flash writes/erases and Flash’s limited write endurance.9

9Even with systematically elided checkpoints [94], continuous checkpointing induces Flash write failure
in less than a week [70].
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Compiler-directed

DINO [91], is a software-only, programmer-driven checkpointing scheme for intermittent

computation. With DINO, programmers write programs using annotations that define a

series of independent tasks, backed by volatile data versioning (i.e., checkpointing) to achieve

recovery consistency. By doing this, DINO provides the notion of task-based atomicity.

Chain [23] extends Dino with a more well-defined data passing interface between tasks that

reduces overhead through checkpoint size reduction at the expense of requiring more complex

programmer reasoning about possible data interfaces. Alpaca [97] extends DINO and Chain

through the dynamic privatization of statically-identified inter-task data. Alpaca detects

shared data using idempotence analysis and copies only the identified data into a private

per-task buffer. This further reduces log/checkpoint size to just the buffered data—ignoring

all volatile state.

Task-based intermittent systems afford a low overhead, but required programmers to rea-

son correctly and statically about the effects of power loss. An automatic alternative is

Ratchet [137]. Ratchet is a compiler that decomposes unmodified code into a series of

checkpoint-connected idempotent computations. Tracking idempotency allows Ratchet to

add overhead only on the subset of non-volatile memory writes that are critical for recovery

consistency. Chinchilla [94] improves upon Ratchet with guidance from a smart timer and

basic-block-level energy estimation. Like Ratchet, Chinchilla’s compiler inserts the check-

points required to make correct forward progress with very short on-times. Like Mementos,

Chinchilla includes a timer-based runtime component that deactivates checkpoints when

there is enough energy to make it to the next checkpoint. In many cases, this eliminates

99% of Ratchet’s checkpoints, while maintaining correct execution. Sweepcache [148] ex-

tends compiler-based intermittent computation to systems with volatile caches between the

processor and NVM, flushing dirty cache lines to NVM at compiler-chosen boundaries in
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software.

Hardware-directed

Idetic [102] is the first hardware-based system for intermittent computation. Idetic takes

applications, creates a hardware circuit from them using existing high-level synthesis tools,

and inserts non-volatile checkpoints in the resulting circuit’s control-and-data-flow graph.

While Idetic works for simple applications and single-function hardware, it is not general

purpose. Non-volatile processors [92, 93] generalize the Idetic approach by incorporating

non-volatility into existing processor pipelines (e.g., via non-volatile flip-flops). Recent work

mixes-in approximation to improve performance [37] for applications that benefit from par-

tial results. Lastly, in an approach closer to compiler-directed approaches than to other

hardware-directed approaches, Clank [52] inserts in-hardware idempotence monitors in the

memory hierarchy to better identify idempotence violations (compared to Ratchet) and to

buffer idempotence-breaking writes to maximally delay checkpoints. Elastin [19] extends on

the idea of Clank, but at page granularity, which is used by more complex systems.

2.7.3 Checkpointing Beyond MCUs

While the focus of most intermittent computation research targets decreasing checkpoint-

ing overhead, other important problems exist. In the first line of work the focus is on

peripherals. Most intermittent computation deployments involve sensors, thus depend on

peripherals. One hidden problem of peripherals is that initialization often takes longer than

a single power cycle [27]. Samoyed addresses this problem with a one-time checkpointing

system that runs user-annotated peripheral functions by disabling checkpoints and undo-

logging [95]. Samoyed guarantees progress by energy profiling, dynamic peripheral workload
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scaling, and a user-provided software fallback routine. The second line of work focuses on

extending intermittent computation to x86-class processors. Work in this direction includes

architectural support for out-of-order superscalar processors [92] and compiler-based tech-

niques that adapt to x86-class systems [20, 90, 117].

2.8 Conclusion

TOTALRECALL exploits the time-dependent volatility of Static Random-Access Memory (SRAM)

to eliminate the need for expensive checkpoints to Flash-based non-volatile memory for the off

times common to intermittent computation. To address the central challenge of identifying

if SRAM acted as a non-volatile memory during the off time, TOTALRECALL uses a Cyclic Re-

dundancy Check (CRC) before and after a power cycle to validate SRAM data integrity. My

evaluation on real hardware with unmodified benchmarks, shows that, compared to the state-

of-the-art one-time checkpointing approach applied to Flash-based systems, TOTALRECALL

increases performance by up to 370x, while dramatically increasing system lifetime. On

microcontrollers that have hardware support for CRC, performance surpasses FRAM-based

checkpointing.

These results show that is is possible to have better than FRAM performance on the more

widely deployed, more available, and higher performance Flash-based systems. Beyond val-

idating TOTALRECALL’s approach to supporting intermittent computation, these results also

open the door to a wave of future approaches that leverage the synergy between the relatively

short off-times common to intermittent computing and SRAM’s time-dependent volatility.



Chapter 3

Hardware Support for Just-in-Time

Intermittent Computation

3.1 Introduction

Continuous advances in the design and manufacture of tiny, low-power computing devices

have opened the door for microcontrollers in applications previously limited by size, power,

or cost constraints. Today’s microcontroller-based sensor motes are small enough to mon-

itor cellular temperature [138] and cheap enough to be deployed in high volumes inside of

groceries [14] or with consumer goods to secure supply chains [56]. These advances have

also enabled the use of sensor motes in more extreme and inaccessible environments such

as space [30], deep underwater [82], or even embedded in concrete [2]. The challenge for

today’s designers is to build systems that best leverage this rapid down-scaling of computing

hardware.

One major hurdle for the widespread deployment of tiny computing platforms is batteries,

which have not experienced the same level of continual scaling as transistors. A typical

lithium battery measuring 1 cm3 can supply a low-power microcontroller drawing 300 µW

for less than 4 months [119], after which the device is useless without a battery replacement—

which is at best costly and at worst infeasible. Batteries also carry a risk of fire or explosion,

limiting their use in sensitive applications such as medical implants, space deployments, or

43
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aircraft. The limitations of batteries are driving work in a new direction: energy harvesting

platforms, which replace the battery with a transducer to capture energy from the envi-

ronment and a buffer capacitor to store the gathered energy until it is sufficient to power

the on-board devices. The source and amount of available energy depends on the operating

environment: many deployed systems are powered by RFID readers [14, 84], while other

promising energy harvesters leverage thermal [92], photovoltaic [49] or piezoelectric [127]

effects.

While energy harvesting opens up new opportunities for self-sufficient devices, it also poses

challenges for the system designer. The unpredictable nature of harvested energy, low power

output of transducer circuits, and energy buffer size limitations mean that a microcontroller

running on harvested energy may maintain operation for a few hundred milliseconds—too

short for many useful software applications to complete before power fails and program

state is lost. Past work proposes a variety of techniques to support long-running program

execution across numerous and frequent power failures, the most promising approach being

just-in-time checkpointing: saving a snapshot of the program state to non-volatile memory

when power failure is imminent [7, 8, 77, 121, 134].

Unfortunately, the requirement of a voltage monitor limits just-in-time checkpointing ap-

proaches. To know when power failure is imminent, just-in-time approaches track the volt-

age across the buffer capacitor (voltage is a surrogate for energy) using an Analog-to-Digital

Converter (ADC) [121] to measured the voltage then comparing the measurement to a user-

defined voltage threshold. However, ADCs are among the most power-intensive peripherals

available on modern low-power microcontrollers: integrated ADCs typically consume as

much or more power than the processor core itself (see Table 3.1), reducing useful com-

putation time by over 50% even before considering the software overhead introduced by

checkpoints. Recent just-in-time approaches replace ADCs with their lighter weight cousins,
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the analog voltage comparator [7, 8, 77, 95]. This decision trades lower voltage resolution for

marginally decreased current consumption. No matter the mechanism to monitor voltage,

recent advancements in just-in-time checkpointing have exposed the voltage monitor as the

primary source of run-time overhead—over an order of magnitude more than checkpoint-

ing [134].

The key issue is that ADCs and analog comparators are not optimized to support intermit-

tent computation. For intermittent computation use cases, energy efficiency is paramount

as long as resolution and sample rate are sufficient. Existing voltage monitors have been op-

timized in the opposite direction: performance first, then energy. The key to unlocking the

promise of just-in-time approaches is a low-power, all-digital, on-chip supply-voltage moni-

tor with just enough resolution and sample rate to meet the demands of current and future

intermittent computation use cases. With such a voltage monitor, it is practical to make

energy availability a first-class abstraction provided by the hardware, improving existing

intermittent computation systems (Section 3.2.3) and enabling future ones.

In order to enable efficient voltage monitoring on energy harvesting systems, I develop Fail-

ure Sentinels—a low power, all digital, reference-free, on-chip voltage monitor designed to

scale with the rest of the system. Failure Sentinels leverages the predictable gate-delay re-

sponse of digital circuits to a changing supply voltage to inform software decisions about

available energy; Failure Sentinels works by counting the number of times a signal traverses

a self-oscillating feedback loop during a fixed time period as a reference-free indicator of

buffer capacitor voltage, which itself indicates available energy. I design Failure Sentinels

using only CMOS (Complementary Metal-Oxide Semiconductor, the technology of choice

for digital integrated circuits) logic, ensuring that it scales along with the rest of the sys-

tem’s digital logic and take advantage of the corresponding price, power, and size benefits.

Failure Sentinels exposes a broad design space to system designers to allow them to tune a
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variety of performance parameters such as resolution and sample rate to find the balance of

performance and energy consumption that is just-right for their use case.

I implement and evaluate Failure Sentinels in SPICE and on a RISC-V-based system-on-

chip running on an Artix-7 Field-Programmable Gate Array (FPGA) [140]. I use the SPICE

implementation to explore Failure Sentinels’s trade space across process nodes and volt-

ages. I use the FPGA implementation to validate the SPICE results and to provide a real-

world demonstration of Failure Sentinels’s performance. Finally, I evaluate Failure Sentinels

against analog alternatives on energy harvesting power traces to explore the system-level im-

pact. My evaluation indicates that Failure Sentinels reduces runtime overhead by 24%–70%

compared to existing solutions, provides a flexible and scalable design space, and enables a

variety of system designs previously limited by voltage monitor options.

This work makes the following three contributions:

• I evaluate existing voltage monitors and identify the power and scalability as the

primary hurdles for their use in current and future intermittent computation systems

(Section 3.2.2).

• I design Failure Sentinels, an on-chip voltage monitor (Section 3.3). Failure Sentinels

leverages the power and space scaling of wholly-digital circuits and enables designers to

build in just enough resolution and sample rate to meet at near-zero additional power

and area (Section 3.4.2).

• I build Failure Sentinels in simulation and on FPGA hardware to explore the pow-

er/accuracy trade space that different Failure Sentinels implementations expose to

designers (Section 3.4). My results show that Failure Sentinels improves intermittent

system performance by up to 77% by eliminating a major source of power consumption,

freeing up energy for useful computation (Section 3.5).
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3.2 Background and Related Work

Although the size and power consumption of modern devices continue to decrease, harvested

energy is typically too weak and unreliable to guarantee enough power to continuously sup-

port current microcontrollers [49, 77, 121, 134]. Instead, energy harvesting circuits slowly

feed power into a buffer capacitor until enough energy is available to support a short burst of

computation. Once computation starts, the microcontroller and peripherals rapidly drain the

capacitor until the system reaches the minimum operating voltage, and the charge-discharge

cycle repeats. The limitations of the harvesting circuit mean that devices running on har-

vested energy can restart dozens of times per second [15, 121]. Given that programs and

programmers alike are not prepared for such operating conditions, previous work proposes

a variety of strategies to stretch long-running computation across frequent power cycles,

referred to as intermittent computation.

3.2.1 Supporting Intermittent Computation

Most current systems to support software on intermittently-powered platforms fall broadly

into one of two categories; while each commits some portion of volatile memory (typically

architectural registers, main memory, and any peripheral registers) to non-volatile mem-

ory, they can do so just-in-time before power failure [7, 8, 77, 95, 121, 134] by measuring

available energy or continuously [23, 52, 91, 97, 137] throughout execution. The choice

of checkpointing strategy is the primary determinant of system performance. Just-in-time

systems theoretically maximize performance by only recording one checkpoint per power

cycle and simplify software’s interface as existing software is supported by linking against

a library-level interrupt handler, but they depend on a voltage monitor attached to the

buffer capacitor that interrupts computation to store a checkpoint when voltage falls below
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Platform MSP430FR5969 [67] PIC16LF15386 [99]
Core Iin (µA/MHz) 110 90
ADC Iin (µA) 265 295
Comp. Iin (µA) 35 75
Core Vmin (V) 1.8 1.8
Ref. Vmin (V) 1.8 2.5

Table 3.1: Core versus ADC/comparator power requirements of sensor-mote-class microcon-
trollers, including voltage reference draw.

a threshold value (indicating imminent power loss). Unfortunately, practical considerations

limit the applicability and performance of just-in-time approaches as existing voltage moni-

toring solutions are ill-suited for the voltage monitoring use case. The key to unlocking the

promise of just-in-time approaches is a low power, scalable, on-chip supply-voltage monitor

with just enough resolution and sample rate.

3.2.2 Monitoring Supply Voltage

Modern low-power microcontrollers include two components suitable for supply voltage mon-

itoring: an Analog-to-Digital Converter (ADC) and an analog comparator. Unfortunately,

the signal-processing focus on resolution and sample rates driving ADC design makes them

unsuitable for supporting intermittent computation because of their relatively high power

consumption: Table 3.1 shows that each component (and supporting circuitry)1 requires

current on-par with the processor itself.2 This means that over half of the energy harvested

is wasted on checking for imminent power failure—as opposed to computation. The wasted

energy will only increase for future systems due to the discrepancy in scaling between digital

logic and ADCs: performance/Watt for processors tends to scale at 2x every 1.57 years [31],

while performance/Watt scales at 2x approximately every 2.6 years [80].
1Both components require a reference voltage to compare against the measured signal, typically provided

by a diode [60] or internal bandgap reference generator [38, 67].
2While discrete low-power ADCs exist [64], their cost is on par with the microcontroller itself and their

standalone nature adds size and complexity to the system.
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To avoid the power-hungry nature of full-fledged ADCs, recent intermittent computation

systems employ single-bit analog comparators [7, 8, 95]. While single-bit analog compara-

tors improve on ADCs, they still waste 21%–45% of harvested energy on reference voltage

generation. Single-bit solutions also limit utility as many current and emerging intermittent

computation systems demand dynamic, fine-grain, and poll-able voltage monitoring; essen-

tially, the ideal solution is making available energy a first-class abstraction provided by the

hardware to software at near-zero energy cost.

3.2.3 Enabling Future Intermittent Systems with Practical Volt-

age Monitoring

The first systems to address intermittent computing on small batteryless devices focus on

enabling long-running intermittent programs [23, 91, 121, 134, 137]; more recent ones focus on

optimizing it [7, 39, 94, 97]. Since checkpoints are one of the drivers of run time overhead (on-

par with voltage monitoring), one way to improve performance is to eliminate superfluous

checkpoints. Chinchilla [94] is a timer-augmented continuous checkpointing system that

improves performance through energy-guided checkpointing. Chinchilla dynamically tunes

a timer to the expected on time and skips checkpoints that occur before the timer expires.

Despite the challenges of representing energy in a timer value, Chinchilla yields a 2x–4x

performance boost over similar checkpointing systems. Chinchilla must be overly pessimistic

on available energy and energy usage to maintain correctness. With a practical voltage

monitoring solution, Chinchilla is able dynamically query available energy and remove its

guard bands; this increases performance, while also increasing system reliability.

Work beyond checkpointing presents a variety of energy-efficient techniques tailored for en-

ergy harvesting. PHASE [32] makes the case for single-workload heterogeneous architectures,
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switching between high-performance and high-efficiency systems for the same workload de-

pending on the availability of ambient power. HarvOS [9] profiles the energy requirements

of each section of code and schedules software execution or non-volatile checkpoints accord-

ingly. Dewdrop [15] similarly balances task execution and sleeping depending on available

energy to make the most of changing ambient energy conditions. These systems all promise

significant performance boosts but depend principally on low cost, on-demand measurements

of remaining energy. While ADCs can fulfill this role, their high resolution and high sample

rate are overkill and steal up to 50% of energy from software. The goal of this work is to

enable these and other technologies through a low power, all digital (i.e., scalable), on-chip

voltage monitor that provides just enough resolution and sample rate; in doing so, I make

energy availability a first-class hardware abstraction.

3.3 Failure Sentinels Design

I design Failure Sentinels: a low power, fully digital, software-programmable voltage mon-

itor optimized to minimize power consumption while meeting the resolution and sample

rate needs of current and future intermittent computation systems. Two intermittent-

computation-focused design goals drive my approach:

• Failure Sentinels must minimize power consumption and provide just enough

resolution and sample rate to serve software’s needs. Section 3.2 shows that

existing voltage monitors fail at this, whereas Failure Sentinels provides enough reso-

lution to support frequent, voltage measurements, while avoiding the design and power

concerns associated with DSP-focused ADCs.

• Failure Sentinels must be compact and fully-digital to enable ubiquity and
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scalability: As energy harvesters find their way into micro-healthcare and smart dust

applications, miniaturization of every component in the system is a primary concern.

Implementing Failure Sentinels with solely the CMOS gates used for digital logic en-

sures that it can be incorporated into any device and scales with process technology.

3.3.1 Ring Oscillators

Digital systems operate correctly at a wide range of voltages using well-chosen clock frequency

guard bands, which hide the extreme sensitivity of the underlying circuits to voltage changes.

Removing these guard bands from an otherwise digital circuit reveals analog-domain latency

changes, which in turn reveal the system voltage. Desktop-class systems use this effect

by measuring the propagation of a signal through lines of digital delay elements to support

dynamic voltage and frequency scaling [16, 42, 110], but their narrow voltage range—beyond

which the input either propagates entirely or not at all—makes them ill-matched for the

voltage monitoring required by intermittent systems. Feeding the output of the delay line

into the input such that that the output changes each time it passes through the entire delay

line (i.e., it is self-oscillating) forms a Ring Oscillator (RO) with an output frequency that is

primarily a function of supply voltage and a dynamic range covering nearly the entire voltage

at which the RO oscillates. This work leverages the voltage-dependent nature of RO

frequency to measure supply voltage.

The RO is a common circuit with applications in clock generation [43], process tuning and

characterization [11, 46, 47], and performance monitoring [18]. Ring oscillators are attrac-

tive options for these applications for their ease of integration into IC designs, low power

consumption, and electrical tunability [98]. The basic RO structure is an odd-numbered

ring of digital inverters as shown at the bottom of Figure 3.2. Because the output of an
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odd-numbered chain of inverters is the inverse of the input, feeding the chain output back to

the input produces a circuit that oscillates as long as power is applied. RO length is largely

application-dependent, but is typically prime to reduce potential harmonic oscillations [10].

The frequency of oscillation depends on the length n of the chain and the gate delay of each

inverter τ d as shown in Equation 3.1 [98].

fo =
1

2nτ d
(3.1)

With a constant chain length, the RO output frequency is entirely dependent on average

gate delay. Several factors affect the gate delay: the designer tunes gate delay by changing

the transistor size or supply voltage, while temperature and manufacturing variations also

play a role. Among these, voltage is the dominant factor [81, 142].3

3.3.2 Voltage-Frequency Relationship

To characterize supply voltage’s effect on RO frequency, I run a comprehensive set of SPICE

simulations on ROs of varying length, operating at a range of supply voltages using the

Predictive Technology Models [17] for the 130nm, 90nm, and 65nm technology nodes. I

choose these feature sizes because they are representative of the technology currently used

on energy harvesting platforms [136] as well as the logical next feature size for future systems.

I sweep the supply voltages from 0.2 V (below which the rings do not oscillate) in 100 mV

steps up to 3.6 V, the maximum supply voltage for typical energy-harvesting-class devices [60,

67, 99].

3Ring oscillators also have potential as fully-fledged ADCs [26, 124], but the signal-processing focus of
these designs precludes them for efficient supply monitoring. However, research in this area to linearize the
RO frequency-voltage curve and reduce sensitivity to process/temperature variations [79, 115] has potential
to improve Failure Sentinels.
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Figure 3.1: RO frequency vs. supply voltage at different feature sizes.

Figure 3.1 illustrates the results of these simulations using 11- and 21-stage ROs in each

technology. I use these results to make three key observations motivating and informing the

design of Failure Sentinels:

• The high sensitivity of frequency to voltage makes ROs viable supply voltage sen-

sor, and the sensitivity increase from moving to smaller processes means that Failure

Sentinels improves as technology scales.

• Decreasing RO chain length magnifies the effects of supply voltage changes, increasing

sensitivity.4

4Decreasing RO length also increases the frequency and therefore current consumption of supporting
circuitry; I explore the tradeoffs of different RO lengths in more detail in Section 3.5.1.
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Figure 3.2: Failure Sentinels block diagram with a divide-by-3 voltage divider. Not shown
is a level shifter for interfacing the enable signal to the RO.

• Regardless of RO length or feature size, the output frequency becomes less sensitive

as supply voltage increases, eventually decreasing at higher supply voltages. The RO

must operate in the low-voltage, high-sensitivity region to reduce error.

3.3.3 System Overview

Figure 3.2 shows the high-level organization of Failure Sentinels. The voltage divider sets

the operating range for the RO, allowing me to tune the RO to operate in the most-sensitive

voltage region. The level shifter makes the output signal from the RO compatible with

the voltage level used by digital logic, reducing power consumption and ensuring reliable

operation. The enable signal drives both an input to the NAND gate closing the RO loop and

an N-type MOS device (NMOS) at the bottom of the voltage divider, allowing the designer
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to change the duty cycle of the RO, reducing dynamic power consumption. Breaking the RO

chain with an enable sets each gate to a known state before it begins oscillating to prevent

higher harmonic output frequencies [10]. Finally, the counter makes the output of the RO

available to the rest of the system in the form of an edge count accumulated during the

sampling period. Software maps the resulting counter values to supply voltage values using

enrollment data stored in the NVM.

3.3.4 Choosing RO Length

Per Equation 3.1, Failure Sentinels’s voltage sensitivity scales proportionally to 1/n where n

is the length of the RO—a given change in supply voltage produces a corresponding frequency

change that is larger in shorter ring oscillators because a smaller n magnifies the impact of

a change in the gate delay τ d on the oscillation frequency. For ROs implemented in the

same technology a given voltage change produces the same proportional frequency change

regardless of the number of RO stages, but Failure Sentinels measures the absolute change

in frequency. A higher change in frequency requires a shorter enable period to detect; a

shorter enable period allows Failure Sentinels to run either at a lower duty cycle (consuming

less power, because the ring spends less time enabled) or at a higher sampling rate. I

distinguish between the enable period—the amount of time the RO is powered to produce

a single sample—and the sample period—the time between distinct samples—and discuss

their impact on Failure Sentinels in more detail in Section 3.3.5.

Note that the dynamic power consumed by an RO is not dependent on its length, as only one

inverter is ever switching at a time.5 Increasing the size of the RO increases area overhead and

static power; however, my evaluation in Section 3.4.2 shows that Failure Sentinels consumes
5Failure Sentinels’s total dynamic power is weakly dependent on RO size because the counter and level

shifter power draw increase with frequency. However, the RO consumes the majority of Failure Sentinels’s
power (Section 3.5.1).
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negligible power and area compared to the rest of the microcontroller. However, an RO that

oscillates too fast for a given sampling period will overflow the counter. Thus, the counter

bit-width, sampling period, and RO length are interconnected, a design space that I explore

in Section 3.5. From these constraints, I analyze the RO length primarily to the extent that

it affects accuracy and power draw by setting a minimum duty cycle.

3.3.5 Duty Cycling

The accuracy of Failure Sentinels depends largely on the sampling rate and duty cycle D =

Ten/Tsample ≤ 1, where Ten is the time per sample during which Failure Sentinels is enabled

and Tsample is the sampling period. A higher Ten enables Failure Sentinels to discriminate

between finer RO frequency, and thus voltage, changes. The output of Failure Sentinels

is in the form of the count C = fro ∗ Ten; the edge-sensitive nature of the counter means

that decimal values of C are effectively truncated. Therefore, the minimum detectable RO

frequency change is 1/Ten. The bit-width n of the counter limits the maximum value of C to

2n−1; all possible values of fro∗Ten must be below this maximum to prevent counter overflow.

Increasing Ten increases both accuracy and power consumption, which scales directly with

duty cycle: given that low-resolution and low-frequency (relative to ADCs) measurements

of the supply voltage are sufficient for current and near-future energy harvesters, operating

Failure Sentinels with a low duty cycle enables significant power savings at little practical

cost. A sufficiently low duty cycle also reduces counter size and its power. I evaluate the

relationship between duty cycle, power, and accuracy in more detail in Section 3.5.1.
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Figure 3.3: Frequency-voltage sensitivity for ROs across length and technology.

3.3.6 Maximizing Voltage Sensitivity

Inverter cell choice Past work provides a variety of options for the design of the inverter

used to build the RO. Most ROs used in communications, clock generation, and other ap-

plications are current-starved [87]: the charge/discharge time of each inverter is limited by

a voltage-controlled current source using a separate variable biasing voltage. An important

property of the current-starved RO for these applications is that the current source isolates

the inverter from supply voltage noise, minimizing uncontrollable variation and enabling the

designer to produce a frequency output that is primarily a function of only the bias volt-

age. The crucial difference in Failure Sentinels is that the change in the supply voltage is
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the quantity of interest. Instead, I maximize sensitivity to changes in the supply voltage

by using the simplest inverter available consisting of single PMOS and NMOS transistors

connected directly to the supply voltage and ground, respectively. This basic inverter design

has additional benefits, as it reduces the total transistor count and is implementable using

digital-only standard cell libraries.

RO operating voltage Figure 3.1 shows that the frequency-voltage curve for each RO is

steepest at lower voltages, leveling off around 2.5 V and decreasing at higher voltages. The

recommended operating voltage for microcontrollers used in recent energy harvesting work is

1.8V–3.6V [67, 73, 99]; for these platforms, connecting the ROs directly to the supply voltage

means that they would operate primarily in the less-sensitive region. Furthermore, the

voltage-frequency relationship at high voltages is non-monotonic—complicating the mapping

in software from RO frequency back to supply voltage. To maximize Failure Sentinels’s

sensitivity to supply voltage changes and keep the voltage-frequency relationship monotonic,

the RO operates at a reduced voltage produced by the transistor-based voltage divider shown

in Figure 3.2. This has the added benefit of reducing power consumption. The trade-off is

that reducing the RO operating voltage adds complexity to the design because the output

must be integrated back into the digital system, which Section 3.3.7 explores in detail.

Assuming a standard n-well process, which exposes the bulk connection of PMOS transis-

tors,6 the voltage divider consists of diode-connected PMOS devices with the bulk terminal

connected to the source to ensure that each device is biased identically even as the gate volt-

age with respect to ground of successive transistors drops. Vgs for each individual transistor

is small, limiting the current draw of the divider. This design parallels a resistive voltage

divider, but the use of transistors makes it applicable to wholly-digital ICs. The drawback of

6In a p-well process, the voltage divider consists of NMOS devices and works equally well.
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the transistor version is that they become non-linear at extremely low and high voltages, but

these voltages are well beyond the specified operational voltage range of microcontrollers.

The RO draws power from a node n PMOS transistors away from ground; in a divider

consisting of m diode-connected devices, the RO supply voltage is Vro = Vsupply ∗ n/m. The

best voltage division ratio depends on the sensitivity curve of the RO, shown in Figure 3.3 for

several RO lengths and technologies. Reducing the voltage seen by the RO tends to increase

sensitivity; however, it also reduces the voltage change seen by the RO for a corresponding

change at the supply rail. I define the sensitivity gain G using Equation 3.2.

G =
Snew

Sold

∗ n

m
(3.2)

The Snew and Sold terms reflect the average sensitivity in the new and old operating re-

gions, respectively. The best division ratio is the one that maximizes G and is technology-

dependent. I find that the best ratios implementable in a small number of transistors are

n/m = 1/3 or 1/2; each of these division ratios produces a sensitivity gain of G ≈ 2. Be-

tween division ratios that produce the same sensitivity gain for a given process, the smallest

one reduces power consumption by reducing the operating voltage of the RO. Thus, I select

n/m = 1/3.

Assuming the transistors are well-matched, the unloaded output of the voltage divider is a

reliable fractional value of the supply voltage. However, enabling the RO to draw power

from the voltage divider reduces the effective resistance between the divider output and

ground—resulting in a voltage drop and a Vro below the nominal value. I compensate for

this voltage drop by increasing the width of certain transistors. I widen the transistors

between the voltage divider output and Vsupply to increase current delivered to the RO and

reduce the magnitude of the voltage drop. Appropriate transistor sizing reduces, but does
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not eliminate, the voltage drop seen at Vro because the proportional error depends on the

value of Vsupply. However, the enrollment process described in Section 3.3.8 accounts for any

remaining error, because the voltage offset is predictable at each supply voltage.

3.3.7 Logic Interfacing

Digital CMOS gates depend on well-defined input signals to achieve high speed and low

power: an input must either be close to the supply voltage or close to ground to fully and

rapidly switch the component transistors. Operating the RO at a fraction of the system’s

supply voltage increases sensitivity and decreases power consumption, but means that ap-

plying the logical 1 output of the RO directly to the counter input (operating at the normal

supply voltage) violates this fundamental assumption of digital CMOS logic. The low-voltage

RO logical 1 at best leaves little margin for noise and at worst is consistently below the core’s

logical 1 level, producing a signal that is unrecognizable to the core. Even if the RO output

is reliably interpreted as a logical 1 by the core, driving CMOS gates with a low-voltage 1

increases power consumption due to ohmic losses from partially-on transistors and current

in the low-impedance path to ground. I resolve the voltage difference using the level shifter

shown in Figure 3.2, a self-reinforcing circuit leveraging the common ground of both voltage

domains to boost the RO output voltage to the core voltage.

Ultimately, software needs to measure the frequency of the RO to make decisions based

on supply voltage. I measure the output of the RO using a digital counter configured as

shown in Figure 3.2 to increment on every positive edge of the level shifter output. The

measurement is sent to a digital comparator for interrupt generation and made available

to software by the addition of an instruction to the microcontroller’s ISA, making energy

availability a first-class hardware abstraction.
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Figure 3.4: Maximum interpolation error for a 21-stage RO in 130nm. The dashed line
indicates minimum error possible using 8-bit calibration table entries.

3.3.8 Voltage-Frequency Memoization

The counter maps RO frequency to a count value; the final step is mapping the count value

to supply voltage. While the slope of the frequency-voltage relationship is predictable across

all ROs, manufacturing-time process variation mean that identical ROs on different chips

produce different frequencies under the same conditions. Microcontroller manufacturers

already address process variation in sensitive circuits such as clock oscillators and sensors [60,

73, 99] using a post-manufacture enrollment step, testing the device with known inputs and

writing device-specific calibration data to the Flash/ROM before deployment. I extend this

enrollment process to increase Failure Sentinels’s precision by recording the RO frequency
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using several known supply voltages. 7 Once deployed, software uses these calibration values

to determine supply voltage with reduced error.

The choice of both what and how much data to store is important. In general, designers can

increase run-time performance by increasing memory consumption and enrollment effort. I

identify and evaluate several enrollment strategies that occupy different points in that trade

space:

• Full enrollment: A simple but impractical solution is to store a voltage value for every

possible Failure Sentinels output; this maximizes accuracy (the voltage-count curve is

fully characterized and stored) and speed (mapping a count to a voltage is a simple

indexing operation). However, it also maximizes memory overhead and enrollment

effort for each device.

• Piecewise-constant interpolation: Instead of storing every possible counter output,

I can trade accuracy for memory overhead by reducing the number of data points stored

in NVM. When the counter produces a value not stored in the lookup table, Failure

Sentinels pessimistically assumes the supply voltage is at whatever level is associated

with the closest stored count value below the measured value. Designers can tune

Failure Sentinels’s accuracy by changing the number of stored data points, while a

runtime count-voltage conversion in this case is slightly slower than with a full table

(requiring a comparison followed by indexing).

• Piecewise-linear interpolation: Piecewise-linear interpolation enables the same

accuracy-memory tradeoff as the piecewise-constant design but instead calculates a

linear interpolation between the nearest two points when a count value is not stored.

7On devices with ADCs, an alternative to manufacture-time enrollment is a one-time characterization of
the RO frequency-supply voltage relationship using the ADC for ground truth.
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This increases accuracy for the same memory footprint at the cost of increased runtime

overhead evaluating the interpolation function.

• Polynomial interpolation: To minimize memory overhead, the enrollment system

can characterize Failure Sentinels at a few supply voltage points and place coefficients

for an arbitrary-degree polynomial regression function in the device’s memory. This

makes space overhead negligible at the cost of runtime performance—evaluating the

polynomial function requires numerous floating-point multiplication operations, which

can be both time- and energy-intensive on typical energy harvesting hardware.

I explore the piecewise-constant and piecewise-linear interpolation designs in more detail

because they are the most flexible and best suited to the performance and NVM constraints

of current energy harvesters. For a continuous function f(x) with lower and upper bounds

a and b, respectively, Equations 3.3 and 3.4 describe the respective maximum error for

piecewise-linear and piecewise-constant interpolation [145].

Econst ≤ h ∗ max
x∈[a,b]

∣∣∣∣df(x)dx

∣∣∣∣ (3.3)

Elin ≤
h2

8
∗ max

x∈[a,b]

∣∣∣∣d2f(x)dx2

∣∣∣∣ (3.4)

f(x) is the mapping from frequency to voltage for a given RO, the inverse of the relationship

shown in Figure 3.1. h is the distance between known frequency datapoints and decreases

with higher NVM consumption; for the frequency-voltage transfer function with minimum

frequency L, maximum frequency H, and c evenly-spaced datapoints8, h = (H − L)/c.

Figure 3.4 shows the maximum error introduced by both types of interpolation as a function

of NVM overhead, assuming that each voltage entry in the table is stored in a single byte.
8One way to increase interpolation accuracy is to locally reduce h by taking more data points in areas

where
∣∣∣df(x)dx

∣∣∣ or ∣∣∣d2f(x)
dx2

∣∣∣ are highest, but for simplicity I use evenly spaced points.
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By operating the RO at a low voltage using the divider described in Section 3.3.6, I maximize

the linearity of the voltage-frequency transfer function and enable highly accurate interpola-

tion with a relatively small NVM footprint. Linear interpolation scales better than constant

interpolation with increasing NVM overhead, but both eventually achieve diminishing re-

turns as other sources of error such as temperature begin to dominate Failure Sentinels’s

total error. The precision of the recorded data points also limits interpolation accuracy,

as shown in Figure 3.4: assuming a 1.8 V supply range, interpolating between 8-bit values

cannot reduce the total error below 1.8V
28
≈ 7mV .

3.4 Failure Sentinels Implementation

I evaluate Failure Sentinels using two implementations, each targeting different aspects of the

design: (1) a SPICE implementation and (2) a FPGA implementation. I use SPICE to drive

my design space exploration and evaluate the effects of supply voltage, feature size, and the

analog circuit components on Failure Sentinels’s performance. To explore the effects of run

time variation such as temperature and to demonstrate Failure Sentinels on real hardware,

I integrate Failure Sentinels into a RISC-V processor running on a FPGA.

3.4.1 SPICE Modeling

I model Failure Sentinels using LTspice [35] to explore its behavior at a wide variety of

supply voltages across different feature sizes. This enables me to practically explore Failure

Sentinels’s design space. To match deployed and near-future real-world energy harvesting

microcontrollers, I implement each RO using the 130nm, 90nm, and 65nm process Predictive

Technology Model (PTM) SPICE cards [17]. I also include the provided parasitic resistance
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and capacitance estimates for local interconnects in those technologies between components.

These SPICE simulations also offer insight into the effects of the analog circuitry (the voltage

divider and level shifters), which is not available on the FPGA. Finally, SPICE includes power

consumption information for each component of the design—enabling a direct comparison

between Failure Sentinels and currently available alternatives such as ADCs.

3.4.2 FPGA Implementation

While the SPICE PTM models make it possible to perform a design-space exploration across

process nodes and voltages, they do not accurately model the effects of thermal variation [88]

and do not capture the ability to incorporate Failure Sentinels into a full system. To validate

the SPICE-based design space exploration, understand temperature’s impact on Failure Sen-

tinels, and to show how architects can add Failure Sentinels to an existing System-on-Chip

(SoC) to make energy availability a first-class hardware abstraction, I implement Failure

Sentinels inside a RISC-V RocketChip SoC [5] on top of a Xilinx Artix-7 FPGA [141]. On

top of this SoC, I run software that communicates with Failure Sentinels via two instruc-

tions added to the ISA: (1) an instruction that stores a 64-bit value representing the available

energy to a user-specified destination register and (2) an instruction that the library-level

recovery routine uses to enable Failure Sentinels as well as set the energy interrupt thresh-

old. Similar to previous work that requires ADC support [134], I link unmodified software

against a library-level interrupt handler that saves software state as a checkpoint when Fail-

ure Sentinels’s interrupt fires.

Following the design goals of the ideal voltage monitor, Table 3.2 shows that adding Failure

Sentinels to an existing SoC is low cost: Failure Sentinels maintains the maximum frequency

of the SoC, minimally increases area, and, in accordance with the SPICE evaluation (Sec-
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area (LUTs) timing (MHz) power (W)
Base SoC 53664 30 1.105
+Failure Sentinels 53687 (+0.04%) 30 (+0.0%) 1.104 (-.09%)

Table 3.2: Failure Sentinels hardware overheads when added to a RISC-V SoC [5]. Note
that power is within the noise margin of the tools.

tion 3.5.1), steals very little energy from software computation. The implemented variant of

Failure Sentinels has a 21-stage RO and an 8-bit counter. The fixed nature of the FPGA fab-

ric precludes implementing the transistor-based voltage divider and level shifter, but those

minimally contribute to Failure Sentinels area and removing them actually increases Failure

Sentinels’s power.

3.5 Evaluation

I take a two-level approach in evaluating Failure Sentinels in order to support comparison

to currently available alternatives. I first perform a comprehensive evaluation of the Failure

Sentinels design space using SPICE simulations to explore the trade space between different

design parameters and their effect on Failure Sentinels. Then I demonstrate Failure Sentinels

on real hardware and evaluate the impact of thermal variation by implementing Failure

Sentinels as part of a RISC-V System-on-Chip using a FPGA. The results of this evaluation

answer the following questions:

1. How does building Failure Sentinels to satisfy certain design constraints impact its

performance in other areas?

2. How do typical sources of run-time variation such as temperature affect Failure Sen-

tinels?

3. How well does Failure Sentinels fit the needs of energy harvesting applications com-
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Design Performance
Parameter Min. Max. Parameter Min. Max.
RO Length 3 73 Mean Current (µA) 0 5
Fs (kHz) 1 10 Fs (kHz) 1 10
Counter Size (bits) 1 16 Granularity (mV) 0 50
Enable Time 1 µs 1 ms NVM Overhead (B) 0 128
NVM Entries 1 128 Transistor Count 0 1000
Entry Size (bits) 1 16

Table 3.3: Failure Sentinels design and performance parameters bounding my exploration.

pared to existing alternatives?

3.5.1 Failure Sentinels Design Space

Failure Sentinels is designed for flexibility; each application places unique demands on the

system in terms of power consumption, resolution, and other parameters. Rather than

hand-design and evaluate one Failure Sentinels implementation for a given deployment, I

explore the Failure Sentinels design space by finding a set of Pareto-optimal implementa-

tions within performance constraints suitable for a range of energy-harvester deployments.

I model Failure Sentinels design as an optimization problem mapping six design parameters

to five performance parameters as shown in Table 3.3. I set the design parameter bounds

to ease integration with today’s energy harvesters—for example, I limit the counter size to

16 bits to improve performance on the 16-bit architectures common to currently deployed

energy harvesters [67]. Similarly, the 1 µs minimum enable-time stems from the minimum

period of the fastest (1 MHz) clock available on similar systems without increasing current

consumption [67].

I explore the resulting design space using Pymoo [13], a Python optimization library. I
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Figure 3.5: Objective space exploration for Failure Sentinels in 90nm.

implement Failure Sentinels in LTspice [35] at several design points spanning the limits

shown in Table 3.3 in each of the process nodes described in Section 3.3.2 and evaluate

each implementation across the typical 1.8V–3.6V operating range, in 100 mV steps. The

results from these simulations form the basis for an analytical model of Failure Sentinels’s

performance that I use to drive the optimization function. However, the SPICE simulations

do not fully reflect several design choices beyond the core Failure Sentinels hardware. In order

to accurately represent a real Failure Sentinels implementation, I augment the analytical

model with several elements beyond the SPICE results:

• I model the number and size of NVM lookup table entries to fulfill the NVM overhead

constraint, and factor in their effect on Failure Sentinels’s accuracy using the piecewise-



3.5. EVALUATION 69

linear interpolation strategy described in Section 3.3.8.

• I include temperature as another limiting factor on Failure Sentinels’s accuracy and

assume a maximum temperature-induced RO frequency deviation of 2% according to

the FPGA-based experiments in Section 3.5.3.

• I add a rejection filter to ensure the resulting configuration is realizable and correct

(e.g., the RO is never enabled long enough to overflow the counter).

In general, the resulting Pareto frontier is five-dimensional in each of the performance pa-

rameters. Given that NVM and die space consumption have minimal impact on operational

performance (as long as the code/calibration data still fit in the NVM and Failure Sentinels

fits on the chip), I expect typical Failure Sentinels deployments to be constrained primarily

by sampling frequency, power, or resolution. For visualization, I reduce the dimensionality

of the frontier by only plotting the first three performance parameters in Table 3.3 with the

knowledge that each solution satisfies the limit on NVM overhead and transistor count. Fig-

ure 3.5 shows the trade space for Failure Sentinels in 90nm technology; each point denotes

the performance of a different Pareto-optimal configuration.

Failure Sentinels’s flexibility enables designers to precisely tune performance to the needs

of their specific application by compromising on each of the three performance parameters

shown. Sampling frequency is the primary driver of current consumption in the design space

I explore because temperature variations rather than current consumption set the limit on

Failure Sentinels’s resolution (see Section 3.5.3). Figure 3.5 shows the current-resolution-

sample rate trade space accounting for the temperature-induced limit; reducing sampling

granularity (e.g., from 38 mV to 48 mV) reduces mean current consumption by 14% at

the highest sampling rate of 10 kHz. This tradeoff becomes more favorable at both lower

sampling rates and smaller process nodes; at a 10 kHz sample rate, there is an 8% difference
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in current consumption between the finest (27 mV) and coarsest (50 mV) granularities for

the 65nm implementation of Failure Sentinels. For all configurations and all technologies,

the RO represents over 90% of Failure Sentinels’s total current consumption. Given that RO

length only affects the power consumption of the supporting components (see Section 3.3.4),

this indicates that duty cycle—a function of sampling frequency and enable-time—is the

primary determinant of current consumption.

In each case, Failure Sentinels dramatically reduces the power budget required for voltage

monitoring hardware and provides the resolution and speed performance needed to enable the

most sophisticated energy harvesting runtimes available. Assuming a 1.8V dynamic range,

Figure 3.6 shows that Failure Sentinels offers between 5 and 6 bits of resolution depending

on feature size while consuming, in total, less than 1 µA—enabling sophisticated energy

harvesting systems with negligible power overhead. Failure Sentinels eliminates between

59%–77% of the system’s energy overhead while enabling the same power-based intermittent

runtimes as an ADC. Even compared to single-bit analog comparators supporting a simple

just-in-time checkpointing system, Failure Sentinels increases energy available to software

by 24%–45%.

3.5.2 Failure Sentinels Scales with Technology

Failure Sentinels’s fully-digital design enables it to scale down with the rest of the processor

to maximize performance. First, smaller process nodes enable lower-power operation, all

other parameters being equal: switching from 130nm to the 90nm process, I observe a 14%

reduction in power consumption—with a similar reduction from 90nm to 65nm. Second,

transistor delays in smaller technologies are also more sensitive to supply voltage varia-

tions [3]: my experiments show that RO frequency in the 65nm process is approximately 2%
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Figure 3.6: Pareto-optimal configurations for each technology with Fs = 5 kHz.

more sensitive to supply voltage than in the 90nm process and 14% more sensitive than the

130nm process.

To predict Failure Sentinels’s performance trends from current energy harvester feature sizes

to near-future ones, I explore the trade space in each technology discussed in Section 3.3.2

around the Fs = 5kHz operating point. Figure 3.6 shows that at the same sample rate,

smaller feature sizes enable both lower current and finer resolution operation for Failure

Sentinels. These results indicate that Failure Sentinels effectively removes the power/size

bottleneck of highly-analog circuits and enables energy harvesters to better leverage the

advantages of transistor scaling.
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Figure 3.7: RO frequency variation with temperature on Xilinx Virtex-7 FPGA.

3.5.3 Temperature Variation

To build a picture of how operational conditions affect Failure Sentinels’s performance, I

need to examine the impact of thermal fluctuations on RO frequency. Environments where

the temperature changes dramatically have the potential to reduce the system’s accuracy

because Failure Sentinels misinterprets temperature-induced frequency changes as voltage

changes. Temperature affects digital circuits by changing gate delay,9 which in turn affects

the frequency of the RO. For Failure Sentinels, the circuitry supporting the RO is largely

temperature-independent: the voltage divider depends only on the relative differences be-
9Temperature affects digital gates by reducing carrier mobility (increasing propagation delay) and re-

ducing threshold voltage (decreasing propagation delay) [111]; each of these effects dominates in different
circumstances.
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tween each device, and temperature affects each device equally. Temperature changes the

maximum operating frequency of the level shifter by changing transistor drive strength, but

my results indicate that RO frequency is always well below the level shifter’s maximum.

Given that the RO is the primary factor in Failure Sentinels’s temperature sensitivity, I

implement a range of RO sizes on a Xilinx Artix-7 FPGA. Using a TestEquity 123H temper-

ature chamber [130], I vary the operating environment from room temperature (25C) up to

75C to encompass the typical operating range of energy harvesting devices. I let the device

stabilize at the target temperature for an hour before measurements. For each configura-

tion and temperature, I report the average of 1000 RO count measurements. Figure 3.7

illustrates the relative change in frequency across temperatures for all implemented ROs. I

consider the temperature-induced error to be the largest frequency change between any two

frequencies. Much like voltage-induced changes, temperature-induced changes are similar

across RO sizes, because only one gate switches at a time. I double the 1% maximum effect

shown in Figure 3.7 to create a conservative, worst-case 2% thermal error. This error fits

past work measuring RO and delay line sensitivity to temperature [18, 132].

This thermal error serves as an upper bound on Failure Sentinels’s resolution. My analytical

model indicates that temperature-induced frequency changes approximately double Failure

Sentinels’s error, motivating future work reducing Failure Sentinels’s temperature sensitivity.

One potential approach is to increase the interconnect length between each inverter; because

transistors are significantly more sensitive than interconnects to temperature changes [149],

increasing the RO delay due to interconnect reduces Failure Sentinels’s overall temperature

sensitivity. Because longer interconnects may affect Failure Sentinels’s voltage sensitivity, I

leave a detailed exploration of this area for future work.



74 CHAPTER 3. HARDWARE SUPPORT FOR JUST-IN-TIME INTERMITTENT COMPUTATION

Monitor Sys. Current (µA) Res. (mV) Fs (kHz) Vckpt (V)
Ideal 112.3 Infinite Infinite 1.82

FS (LP) 112.5 50 1 1.87
FS (HP) 113.6 38 10 1.86

Comparator 147.3 30 3030* 1.86
ADC 377.3 0.293 200 1.87

Table 3.4: Voltage monitors I evaluate within a full system. FS (LP) uses a 67-stage RO
with a 49-entry LUT of 8-bit values, while FS (HP) uses a 7-stage RO with a 52-entry LUT
of 10-bit values. Both versions uses a 6-bit counter and a 1 µs enable time. *Comparator
response time is 330 ns.

3.5.4 System-level Impact

In order to determine the impact Failure Sentinels has on a typical intermittent system in an

energy-scarce environment, I compare it to existing solutions in the context of a simulated

solar-powered energy harvester using the EnHANTs irradiance dataset [40] for a pedestrian in

New York City at night. Similar to past energy harvesting architectural exploration [32], I use

this simulation framework to explore the effect of different Failure Sentinels configurations

on system performance, measured in time available for executing application code.

Evaluation Parameters I compare Failure Sentinels to the analog alternatives on the

MSP430FR5969 [67] detailed in Table 3.1. I evaluate one 90nm Failure Sentinels imple-

mentation optimized for high performance (HP) and one for low power (LP), taken from

opposite extremes of the objective space exploration in Figure 3.5. I model a typical en-

ergy harvesting sensor using a 5 cm2, 15% efficient solar panel to charge a 47 µF storage

capacitor; when the capacitor reaches the enable voltage of 3.5V, the microcontroller and a

peripheral accelerometer [34] begin consuming power. Both devices operate until the supply

capacitor reaches a checkpoint voltage detailed below, at which point the microcontroller

stops application code and stores a checkpoint in NVM. I model the current consumption of

the microcontroller core, accelerometer, and voltage monitor when the device is executing,
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Figure 3.8: Reduction in available time to process application code, normalized to ideal
monitoring.

and a leakage current of 0.5 µA at all times.

Checkpointing Mechanics I model the worst-case checkpoint behavior as writing all

volatile data to non-volatile FRAM, which takes 8.192 ms at a clock frequency of 1 MHz

on my microcontroller. This execution time combined with total current draw and supply

capacitance sets the ideal minimum voltage at which the microcontroller has just enough

energy to complete the checkpoint. However, the limited accuracy of each system prevents

us from achieving this minimum voltage. I add the measurement resolution of each device

to the theoretical minimum to ensure the checkpoint will always complete despite worst-case

measurement error and show the final checkpoint voltage for each system in Table 3.4. The



76 CHAPTER 3. HARDWARE SUPPORT FOR JUST-IN-TIME INTERMITTENT COMPUTATION

similar checkpoint voltages across each monitor, despite dramatic differences in resolution,

show how current monitors are over-optimized for resolution because the additional energy

drawn from the capacitor is consumed by the monitor itself. Finally, I consider the effect of

monitor sampling frequency (because capacitor voltage changes over the course of a sample).

The effect of sampling frequency on accuracy is small for this scenario—2mV in the worst

case using FS (LP)—showing that reducing sampling frequency is an effective way to reduce

power consumption without sacrificing performance.

Performance Comparison Table 3.4 and Figure 3.8 illustrate the performance improve-

ment of Failure Sentinels over analog-based alternatives for my checkpointing system. I

normalize all runtime results to performance using the ideal voltage monitor, representing

perfect sampling and zero overhead from monitoring hardware. Both implementations of

Failure Sentinels achieve near-ideal runtime, compared to the 24% and 70% runtime penal-

ties of the analog solutions—illustrating Failure Sentinels’s ability to maximize the time and

energy available for application code.

Discussion While I evaluate Failure Sentinels here based on a typical batteryless sensor

mote, different system-level design choices place different demands on the voltage monitoring

hardware. Systems with smaller supply capacitors require a monitor with a higher sampling

frequency because the supply capacitor discharges more per unit of time, but designers

must balance higher sampling frequency with the corresponding current draw. Conversely,

monitor resolution becomes more important as the size of the supply capacitor increases

because the voltage offset represents increasingly more energy that could have otherwise

been used for computation. Broadly, I expect small sensor motes to favor a low-current,

low-resolution implementation of Failure Sentinels while platforms with comparatively large

supply capacitors and active power draws (e.g., energy harvesting satellites [30]) benefit
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more from a high-resolution implementation of Failure Sentinels when the additional energy

extracted from the capacitor outweighs the increased draw of the monitor itself. Emerging

energy-aware systems beyond checkpointing (Section 3.2.3) will further exercise the voltage

monitoring trade space I explore, highlighting the value of Failure Sentinels’s flexibility.

3.6 Conclusion

Failure Sentinels leverages the voltage-dependent gate delay of CMOS devices to eliminate

the need for ill-suited, high-power analog hardware to monitor available energy. I design

Failure Sentinels to provide just enough performance using only the lowest power, most

scalable hardware available to designers: the transistor. A focus of my design is identifying

and operating at the sweet spot of the transistor delay and voltage relationship, where dy-

namic power is reduced and sensitivity is most linear. I incorporate Failure Sentinels into

a RISC-V system-on-chip and provide a software-queriable register for energy availability,

making energy availability a first-class abstraction of the hardware. My evaluation shows

that Failure Sentinels reduces power consumption by between 59% and 77% compared to

conventional analog-to-digital converters—without compromising system performance. Re-

placing one-bit voltage comparators with Failure Sentinels reduces power consumption by

between 24% and 45%, while also enabling a myriad of new power-responsive techniques to

improve whole-system efficiency and performance.

These results show that enabling sophisticated intermittent computing support on even the

smallest, lowest-power devices is possible without a substantial increase in price or power

consumption. Failure Sentinels’s low power and space overhead implies that it could even

be integrated onto devices smaller than microcontrollers to support sophisticated intermit-

tently operated peripherals, expanding the horizons for future energy harvesting designs and
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deployments.



Chapter 4

Energy-Adaptive Buffering in

Batteryless Systems

4.1 Introduction

Ever-shrinking computing and sensing hardware has pushed mobile Internet-of-Things (IoT)

type devices beyond the limits of the batteries powering them. A typical low cost/power

microcontroller [62] drains a 1 cm3 battery nearly 14x its size in just over 8 weeks of active

operation [109], rendering the system useless without a potentially costly replacement effort.

Cost, maintenance, and safety concerns make batteries further incompatible with massive-

scale (one million devices per square kilometer [12]) and deeply-deployed (infrastructure [2],

healthcare [105]) applications. IoT engineers are turning to batteryless energy harvesting

platforms to power low-cost, perpetual systems capable of driving a ubiquitous computing

revolution. Increasingly efficient energy harvesting circuits enable batteryless systems across

a range of IoT use cases including feature-rich batteryless temperature sensors 500x smaller

than a grain of rice [138] and batteryless flow-meters [44] supporting deep-sea drilling or

geothermal plants for decades without maintenance.

The energy harvesting design model both enables new deployments previously limited by

batteries and places new demands on system developers. Harvested energy is highly unre-

liable: sensitive environmental factors such as shadows over a photovoltaic cell or shifts in

79
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the orientation of a rectenna produce rapid, outsized changes in the energy scavenged by

the harvester. Energy harvesters mitigate this unreliability by charging an energy buffer to

a given enable voltage, which the system periodically discharges to supply a useful quantum

of work despite potential power loss.

Buffer capacity is a key design element of any batteryless system. Past work [24] explores

the tradeoff between buffer sizes: small buffers are highly reactive—charging rapidly and

quickly enabling the system to address time-sensitive events—but sacrifice longevity because

they rapidly discharge during operation, guaranteeing only a short burst of uninterrupted

operation. Large buffers store more energy at a given voltage, improving longevity by sup-

porting a longer or more energy-intensive burst of operation at the cost of reactivity because

they require more energy to enable the system at all. Matching buffer size to projected en-

ergy demand is critical to ensuring the system is both reactive enough to address incoming

events/deadlines (e.g., periodic sensor readings) and long-lived enough to support uninter-

ruptible operations (e.g., radio transmissions). Designers choose the minimum size necessary

to power all atomic operations on the device, maximizing reactivity given a required level of

longevity.

In this work, I explore static energy buffer efficiency as a third metric for buffer performance

and find that it varies dramatically with net energy input rather than simple energy demand.

Small buffers reach capacity quickly if power input exceeds instantaneous demand—burning

off hard-won energy as heat to prevent overvoltage. Large buffers capture all incoming power,

but enable slowly and lose more harvested energy to leakage below the minimum system

voltage. The volatile nature of harvested power means that fixed-size buffers experience both

problems over the course of their deployment, discharging energy during a power surplus and

losing large portions of energy to leakage during a deficit.
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To make the most of incoming energy in all circumstances, I propose REACT1: a dynamic

energy buffering system that varies its capacitance following changes in net power. RE-

ACT maximizes system responsiveness and efficiency using a small static buffer capacitor,

quickly enabling the system to monitor events or do other low-power work under even low

input power. If input power rises beyond the current system demand and the static buffer

approaches capacity, REACT connects additional capacitor banks to absorb the surplus,

yielding the capacity benefits of large buffers without the responsiveness penalty. When net

power is negative, these capacitors hold the system voltage up and extend operation beyond

what is possible using the small static capacitor.

While expanding buffer size to follow net power input ensures the system can capture all

incoming energy, increasing capacitance also increases the amount of unusable charge stored

on the capacitor banks—charge which could power useful work if it were on a smaller ca-

pacitor and therefore available at a higher voltage. As supply voltage falls and approaches

a minimum threshold, REACT reclaims this otherwise-unavailable energy by reconfiguring

capacitor banks into series, shifting the same amount of charge onto a smaller equivalent ca-

pacitance in order to boost the voltage at the buffer output and ensure the system continues

operating for as long as possible. REACT effectively eliminates the design tradeoff between

reactivity and capacity by tuning buffer size within an arbitrarily large capacitance range,

only adding capacity when the buffer is already near full. REACT ’s charge reclamation

techniques maximize efficiency by moving charge out of large capacitor banks onto smaller

ones when net input power is negative, ensuring all energy is available for useful work.

I integrate a hardware prototype of REACT into a full energy harvesting platform to evaluate

it against previous work, operating under different input power conditions and with different

power consumption profiles. My results indicate that REACT provides the ”best of both

1Reconfigurable, Energy-Adaptive CapaciTors
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worlds” of both small- and large-buffer systems, rapidly reaching the operational voltage

under any power conditions while also expanding as necessary to capture all available en-

ergy and provide software longevity guarantees as needed. Maximizing buffer capacity and

reclaiming charge using REACT ’s reconfigurable capacitor banks eliminates the efficiency

penalties associated with both small and large static capacitor buffers, increasing the portion

of harvested energy used for application code by an average 39% over an equally-reactive

static buffer and 19% over an equal-capacity one. I also compare REACT to recent work

exploring dynamic-capacitance batteryless systems [144] using a fully-interconnected capaci-

tor architecture; my evaluation on real-world energy harvesting traces shows that prior work

targeting the reactivity-longevity tradeoff underperforms baseline static capacitance systems

as a result of lossy switching between capacitance modes. REACT improves performance by

an average 26% over the state of the art owing to its efficient bank-based charge management

structure. This work makes the following technical contributions:

• I evaluate the power dynamics of common batteryless systems in real deployments and

explore how common-case volatility introduces significant energy waste in static or

demand-driven buffers (§ 4.2).

• I design REACT , a dynamic buffer system which varies its capacitance according

to system needs driven by net input power (§ 4.3). REACT ’s configurable arrays

combine the responsiveness of small buffers with the longevity and capacity of large

ones, enables energy reclamation to make the most of harvested power, and avoids the

pitfalls of energy waste inherent in other dynamic capacitance designs (§4.3.3).

• I integrate REACT into a batteryless system and evaluate its effect on reactivity,

longevity, and efficiency under a variety of power conditions and workloads (§4.5).

My evaluation indicates that REACT eliminates the responsiveness-longevity tradeoff



4.2. BACKGROUND AND RELATED WORK 83

inherent in static buffer design while increasing overall system efficiency compared to

any static system.

• I publish my design and evaluation data for REACT and baseline systems in an open-

source repository at https://github.com/FoRTE-Research/REACT-Artifact to en-

able further evaluation and integration of REACT into batteryless systems.

4.2 Background and Related Work

Scaling sensing, computation, and communication down to smart dust [83] dimensions re-

quires harvesting power on-demand rather than packaging energy with each device using

a battery. Many batteryless systems use photovoltaic [29, 138] or RF power [121], while

other use-cases are better suited for sources such as vibration [127], fluid flow [44], or heat

gradients [92]. Commonalities between ambient power sources have inspired researchers to

develop general-purpose batteryless systems, regardless of the actual power source: ambient

power is unpredictable, dynamic, and often scarce relative to the active power consumption

of the system.

Batteryless systems isolate sensing and actuation components from volatile power using a

buffer capacitor. The harvester charges the capacitor to a pre-defined enable voltage, after

which the system turns on and begins consuming power. Because many environmental

sources cannot consistently power continuous execution, systems operate intermittently—

draining the capacitor in short bursts of operation punctuated by long recharge periods.

This general-purpose intermittent operation model has enabled researchers to abstract away

the behavior of incoming power and focus on developing correct and efficient techniques for

working under intermittent power [52, 91, 94, 97, 134, 137].

https://github.com/FoRTE-Research/REACT-Artifact
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Figure 4.1: Static buffer operation on a simulated solar harvester. Highlighted blocks indicate
the system is running.

4.2.1 Choosing Buffer Capacity

Buffer size determines system behavior in several important ways. Supercapacitors pro-

vide inexpensive and small-form-factor bulk capacitance [85], enabling designers to choose

a capacitor according to performance rather than cost or size concerns. Two metrics mo-

tivate past work: reactivity refers to the system’s ability to rapidly charge to its enable

voltage and begin operation. High reactivity ensures a system is online to execute periodic

tasks or address unpredictable input events. Longevity refers to the energy available for an
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uninterrupted period of work with no additional power input; long-lived systems support

high-power and long-running uninterruptible operations and reduce the overhead incurred

with state recovery after a power loss.

Reactivity and Longevity:

A batteryless system’s reactivity and longevity depend primarily on the charge and discharge

rate of the buffer capacitor. I illustrate the tradeoff using a simulated solar harvester with a

22% efficient, 5 cm2 panel, based on a pedestrian trace from the EnHANTs solar dataset [40].

The system runs from 3.6V down to 1.8V and draws 1.5 mA in active mode, representative

of a typical deployment [89]. Figure 4.1 illustrates the reactivity-longevity tradeoff inherent

in static buffer systems at two design extremes, using a 1 mF and 300 mF capacitor. The

1 mF system charges rapidly and is therefore highly reactive, reaching the enable voltage

over 8x sooner than the 300 mF version. However, the smaller capacitor also discharges

quickly—the mean length of an uninterrupted power cycle using the 1 mF capacitor is 10

seconds versus 880 seconds for the 300 mF capacitor, indicating the 300 mF system is far

longer-lived once charged. The relative importance of reactivity and longevity depends on

the use case, but often changes over time for a complex system—complicating design further.

Power Volatility and Energy Efficiency:

Buffer capacity is also a major driver of end-to-end energy efficiency: using the 300 mF

capacitor the system is operational for 49% of the overall power trace, compared to only

27% for the 1 mF platform. This stems from the high volatility of incoming power—82% of

the total energy input is collected during short-duration power spikes when harvested power

rises above 10 mW, despite the system spending 77% of its time at input powers below 3
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mW. A large buffer captures this excess energy to use later while the smaller buffer quickly

reaches capacity and discharges energy as heat to avoid overvoltage.

Large buffers, however, are not always more efficient: the energy used to charge the capacitor

to the operational voltage cannot power useful work, and is eventually lost to leakage while

the system is off. When power input is low, this ”cold-start” energy represents a significant

portion of total harvested energy. For the system described above powered by a solar panel

at night [40], the 1 mF buffer enables a duty cycle of 5.7% versus only 3.3% using a 10 mF

buffer. This low power environment highlights another risk of oversized buffers: the system

using the 300 mF capacitor never reaches the enable voltage and so never begins operation.

Improvements in harvester efficiency and low-power chip design are closing the gap between

harvester output and chip power consumption. Power is increasingly limited by volatile

environmental factors rather than scarcity induced by low efficiency; the result is that energy

harvesters experience periods of both energy scarcity and surplus. Rapidly changing power

conditions place opposing demands on batteryless systems, which must remain responsive

with low input power, provide longevity for long-running operations, and maximize efficiency

by avoiding energy waste.

4.2.2 Power-Responsive Performance Scaling

One solution to volatile energy input is modulating throughput according to incoming power,

increasing execution rate when power is plentiful and decreasing it to maintain availability

when power is scarce. Limiting net input power to the buffer by matching power con-

sumption with input enables systems to use small buffer capacitors without reaching the

buffer capacity, ensuring no power is wasted with an over-full buffer. Past work realizes

power-responsive scaling using heterogeneous architectures [32] or by adapting the rate and
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accuracy of software execution [1, 6, 96, 143].

Unfortunately, I find the assumptions underlying power-performance scaling often do not

apply to batteryless systems. Increasing energy consumption by accelerating execution only

improves systems which have useful work to do exactly when input power is high, but many

batteryless systems focus on periodic sensing and actuation deadlines which do not correlate

with ambient power supply. Further, resource-constrained platforms may have few on-chip

operations which can be delayed until power is plentiful; when these operations do exist,

they are often not amenable to scaling (e.g., transmitting data to a base station may be

delayed but always requires a fixed-cost radio operation). Flexible batteryless systems must

capture energy and use it on demand rather than fit operation to unreliable power input.

4.2.3 Multiplexed Energy Storage

Rather than match power consumption to incoming supply, systems may charge multiple

static buffers according to projected demand. Capybara [24] switches capacitance using an

array of heterogeneous buffers: programmers set capacitance modes throughout the program,

using a smaller capacitor to maximize responsiveness for low-power or interruptible tasks

and switching to a larger capacitor for high-power atomic operations. UFoP and Flicker [48,

50] assign each peripheral on the system a separate buffer and charging priority, enabling

responsive low-power operation while waiting to collect sufficient energy for high-power tasks.

These systems increase overall energy capacity by directing excess power to capacitors not

currently in use.

Static arrays increase capacity without reducing responsiveness, but waste energy when

charge is stored on unused buffers. Reserving energy in secondary capacitors 1) requires

error-prone [96] speculation about future energy supply and demand to decide charging
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priorities, which can change between when energy is harvested and when it needs to be used;

and 2), wastes energy as leakage when secondary buffers are only partially charged, failing

to enable associated systems and keeping energy from higher-priority work. To minimize

programmer speculation, decouple tasks which compete for buffered energy, and minimize

leakage, energy must be fungible: the buffer must be capable of directing all harvested energy

to any part of the system on demand.

4.2.4 Unified Dynamic Buffering

Past work has also explored varying the behavior of a single unified buffer to capture the

fungibility requirement described above. Dewdrop [15] varies the enable voltage to draw

from a single capacitor according to projected needs (e.g., begin operation at 2.2V instead of

3.6V)—providing complete energy fungibility—but still suffers from the reactivity-longevity

tradeoff of capacitor size. Morphy [144] replaces static buffers using a set of capacitors in a

unified switching network; software can connect and disconnect arbitrary sets of capacitors

in series or parallel to produce different equivalent capacitances.

I evaluate REACT alongside Morphy because the Morphy architecture also targets the reac-

tivity and longevity challenges discussed in § 4.1, but several key design choices differentiate

each system. Morphy’s fully-connected capacitor network (Figure 4.4) enables a wide range

of equivalent capacitance configurations for a given set of capacitors, particularly for low

capacitances: every capacitor in the network can be combined in series for an equivalent ca-

pacitance of C/N (assuming N C-sized capacitors), producing a highly-reactive system. This

design also enables Morphy to act both as bulk energy storage and a large charge pump,

boosting low-voltage inputs from an energy harvester by up to the number of capacitors

in the system by alternating between fully-parallel and fully-series. In contrast, REACT ’s
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bank-based design (Figure 4.3) limits the number of potential configurations as all banks are

effectively permanently in parallel—instead, REACT realizes high reactivity using a small

static capacitor (§4.3.2).

The key advantage of REACT ’s design is energy efficiency. As software reconfigures Mor-

phy’s fully-connected network to vary capacitance, current flows between capacitors within

the network to equalize the output voltage of the array. This internal current dissipates a

significant portion of stored energy; energy is lost on every reconfiguration of the network,

dramatically reducing overall efficiency when faced with the highly volatile power inputs

typical of many real-world deployments (§4.2.1) as the system rapidly varies capacitance to

match net power input. My evaluation in §4.5 shows that this internal energy dissipation

reduces common-case end-to-end performance below that of even static capacitors, making

this approach impractical for energy-constrained devices. REACT eliminates this loss by

dividing sets of capacitors into mutually isolated banks and ensuring no current flows be-

tween banks even as software varies capacitance. This energy-focused approach prioritizing

minimal energy loss is key to developing intermittent systems that simultaneously maximize

reactivity, longevity, and overall efficiency.

4.3 Design

An intelligent energy buffering strategy is key to effective and efficient batteryless sys-

tems. Three performance objectives, informed by the advantages and limitations of prior

approaches, drive REACT ’s design:

• Minimize charge time: Rapidly reaching the operational voltage, even when buffered

energy cannot support complex operation, maximizes reactivity and enables systems

to reason about power or sensor events from within low-power sleep modes.
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Figure 4.2: REACT diagram and signal flow between components.

• Maximize capacity: System-wide longevity and efficiency require buffering large

amounts of incoming energy when power supply exceeds demand, either to power

long-running uninterruptible operations or support future power demand when supply

is low.

• Maximize energy fungibility: Unpredictable power demand patterns mean that

energy cannot be pre-provisioned to specific operations at harvest-time; systems need

the ability to draw all harvested energy from the buffer and direct it as needed.

4.3.1 REACT Overview

REACT buffers energy using a fabric of reconfigurable capacitor banks that software adjusts

as needed. Figure 4.2 shows a high-level overview of REACT ’s hardware design. I design
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REACT ’s hardware component as a drop-in replacement for a typical buffer between the

harvester and the rest of the system, while the buffer management software requires no code

modification or programmer input. The only system prerequisite is a set of digital I/O pins

to configure capacitor banks and receive voltage monitoring information.

4.3.2 Cold-start Operation and the Last-level Buffer

From a cold start (E(t) = 0), REACT minimizes overall capacitance in order to rapidly

charge to the operational voltage and enable the system with minimum energy input (high

reactivity). The minimum capacitance is set by the smallest quantum of useful work available

on the system (minimum required longevity), such as a short-lived software operation or an

initialization routine that puts the system into a low-power responsive sleep mode. REACT

provides this rapid charge time using a small static buffer referred to hereafter as the last-

level buffer. Additional capacitor banks are connected using normally-open switches and

only contribute to overall capacitance when configured to do so in software, after the system

is able to reason about buffered energy.

The last-level buffer sets the minimum capacitance at power-on when all other banks are

disconnected. This enables simple tuning of the energy input required to enable the sys-

tem (reactivity) and the guaranteed energy level when the system does begin work (mini-

mum longevity). It also smooths voltage fluctuations induced by capacitor bank switching

(§ 4.3.3). Finally, the last-level buffer serves as the combination point between the differ-

ent capacitor banks and the rest of the system. Although energy may be stored in multiple

banks of varying capacity at different voltages, combining it at the last-level buffer simplifies

system design by presenting harvested power as a unified pool of energy which the system

taps as needed (i.e., harvested energy is fungible).
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Monitoring Buffered Energy

Despite mutual isolation, bank voltages tends to equalize: the last-level buffer pulls energy

from the highest-voltage bank first, and current flows from the harvester to the lowest-voltage

bank first. This enables REACT to measure only the voltage on the last-level buffer as a sur-

rogate for remaining energy capacity. If voltage rises beyond an upper threshold—the buffer

is near capacity—REACT ’s voltage instrumentation hardware signals the software compo-

nent running on the microcontroller to increase capacitance using the configurable banks.

Voltage falling below a lower threshold indicates the buffer is running out of energy and

that REACT should reconfigure banks to extract additional energy and extend operation.

REACT ’s instrumentation only needs to signal three discrete states—near capacity, near

undervoltage, and OK—so two low-power comparators is sufficient for energy estimation.

4.3.3 Dynamic Capacitor Banks

The last-level buffer on its own enables high reactivity and minimizes cold-start energy

below the operational minimum, maximizing efficiency during power starvation. However,

when net power into the buffer is positive—such as during a period of high input power

or low workload—the small last-level buffer rapidly reaches capacity. REACT provides the

energy capacity required to both maximize efficiency and support long-running operation

by connecting configurable capacitor banks when the last-level buffer reaches capacity, as

shown in Figure 4.2.

Capacitor Organization

Careful management of the connections between each capacitor is key to maximizing energy

efficiency while also presenting a valid operational voltage for the computational backend.
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(a) Two capacitors, parallel
configuration

(b) Three capacitors, series
configuration

Figure 4.3: REACT capacitor banks in different bank sizes and configurations. Arrows
indicate charging current path.

Morphy [144] presents one approach: by connecting a set of equally-sized capacitors through

switches similar to a charge pump, overall buffer capacitance can be varied across a wide

range of capacitance values. Different switch configurations produce intermediate buffer sizes

between the extremes shown in Figure 4.4; gradually stepping through these configurations

smoothly varies capacitance through software control.

A fully interconnected array enables a wide range of equivalent capacitances, but intro-

duces significant waste through dissipative heating when the charged capacitor array is

reconfigured. Figure 4.5 illustrates how energy is lost when charged capacitors are con-

nected in a new configuration. Before reconfiguration, the energy contained in the system

is Eold = 1
2
(C/4)V 2; when a capacitor is taken out of series and placed in parallel with

the remaining capacitors to increase equivalent capacitance to 4C/3, current flows to the
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Harvester Output

(a) Full series configuration with Ceq = C/4
Harvester Output

(b) Full parallel configuration with Ceq = 4C

Figure 4.4: Structure of the unified approach presented by Yang et al. [144]. Arrows indicate
charging current path.

lower-voltage newly-parallel capacitor to equalize output voltage. The final output voltage is

3V /8, and the remaining energy is Enew = 1
2
(4C/3)(3V /8)2. The portion of energy conserved

is Enew/Eold = 0.75—i.e., 25% of buffered energy is dissipated by current in the switches

during reconfiguration. Larger arrays are increasingly inefficient: the same scenario with

an 8-capacitor array wastes 56.25% of its buffered energy transitioning from an 8-parallel

to a 7-series-1-parallel configuration. Similar waste occurs when reducing equivalent capac-

itance by placing capacitors in series.2 My evaluation in § 4.5.6 indicates that the energy

loss caused by switching often outweighs any advantage from dynamic behavior, causing the

fully-connected approach to underperform even static buffers.

2Charge pumps avoid this waste by never connecting capacitors at different potentials in parallel; in this
use case, however, parallel capacitance is always necessary to smooth voltage fluctuations during switching
and keep the output voltage within the computational backend’s acceptable range.
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Figure 4.5: Dissipative current flow in a fully-unified buffer during reconfiguration. Energy
is dissipated by current spikes after capacitors at different voltages are placed in parallel.

Bank Isolation

The switching loss discussed above stems from charge flowing between capacitors within the

power network as they switch into different configurations. REACT eliminates unnecessary

current flow by organizing capacitors into independent, mutually isolated banks as shown

in Figure 4.2. Figure 4.3 illustrates in detail two example capacitor banks in each possible

configuration: capacitors within a bank can only be arranged in either full-series (low capaci-

tance) or full-parallel (high capacitance) so that no current flows between capacitors within a

bank. Isolation diodes on the input and output of each bank prevent current between banks:

when a charged parallel-configured bank is reconfigured into series (reducing its capacitance

and boosting its output voltage), isolation diodes prevent it from charging other banks in the

array. Similarly, banks re-configured into parallel cannot draw current from anywhere ex-

cept the energy harvester. Isolation reduces the number of potential capacitor configurations

compared to a fully-connected network, but dramatically increases energy efficiency.

REACT ’s isolation diodes direct the flow of current: intermediate capacitor arrays are only

charged directly from the energy harvester and only discharge to the last-level buffer. This
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also means that all current from the harvester flows through two diodes before reaching

the system, so minimizing power dissipation in the diodes is essential to maintaining overall

system efficiency. To maximize charging efficiency, I design REACT using ideal diode circuits

incorporating a comparator and pass transistor, rather than typical PN or Schottky diodes.

Active ideal diodes are far more efficient at typical currents for batteryless systems: the

circuit I use [71] dissipates 0.02% of the power dissipated in a typical Schottky diode [128]

at a supply current of 1 mA.

Bank Reconfiguration

The range of buffer sizes depends on the number of capacitor banks and the number of

capacitors in each bank. REACT ’s capacitor banks are effectively connected in parallel, so

the overall capacitance is the sum of each bank’s contribution. Each REACT bank containing

N identical capacitors of capacitance C may be configured to contribute no capacitance

(disconnected), series capacitance C/N , or parallel capacitance NC.

REACT must increment buffer capacitance in small steps in order to keep voltage within

the operational range while capturing all incoming power. A large increase in capacitance

pulls output voltage down and introduces cold-start energy loss if net power input is low; for

extreme cases, the system may run out of energy and cease execution while the new capaci-

tance charges even if incoming power would be sufficient to power operation. REACT first

connects banks in the series configuration to contribute a small capacitance and avoid large

jumps in overall buffer size. If the buffer continues to charge and reaches the upper volt-

age limit Vhigh, REACT further expands capacitance by toggling double-pole-double-throw

bank switches to configure the capacitors in parallel. Expanding the buffer by reconfiguring

charged capacitors rather than adding new ones reduces the time the system is cut off from

input power while current flows exclusively to the new capacitance, because it is already
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charged to Vhigh/N . Because no current flows between capacitors or banks, bank recon-

figuration changes capacitance seen on the common rail without dissipative loss. REACT

uses break-before-make switches to ensure no short-circuit current flows during switching;

incoming current flows directly to the last-level buffer during the momentary open-circuit in

the bank.

Charge Reclamation

Reconfiguring a bank from series to parallel allows REACT to efficiently increase capac-

itance without dropping output voltage. When voltage on the last-level buffer appraches

the threshold value Vlow, indicating net power is leaving the buffer, REACT needs to reduce

equivalent capacitance to boost voltage and keep the backend running. REACT accomplishes

this by transitioning charged N -capacitor banks from the parallel to the series configuration,

reducing equivalent capacitance from NC to C/N and boosting output voltage from Vlow

to NVlow. This boosts voltage on the last-level buffer and extracts more energy from the

capacitor bank than would otherwise be available once voltage falls below Vlow.

The remaining energy unavailable after the parallel→series transition depends on the number

N of Cunit-size capacitors in the bank. Before switching, the cold-start energy stored on the

parallel-mode bank is Epar = 1
2
NCunitV

2
low. Switching to the series configuration conserves

stored energy: Eser =
1
2
(Cunit/N)(NVlow)

2 = Epar, but boosts voltage to enable the digital

system to continue extracting energy. If net power remains negative, the system eventually

drains the series-configuration bank down to Vlow. This is energetically equivalent to draining

the parallel-configuration bank to Vlow/N , leaving Epar =
1
2
NCunit(Vlow/N)2 = 1

2
CunitV

2
low/N

unusable; the overall result is that REACT reduces energy loss by a factor of N2 when

reducing system capacitance compared to simply disconnecting the capacitor.
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Bank Size Constraints

Increasing the number of capacitors N in a bank improves efficiency by reclaiming more

energy when switching a bank from parallel to series. However, it also introduces voltage

spikes when the bank output voltage is temporarily multiplied by N . Because REACT

measures overall energy at the last-level buffer, the software component may interpret this

voltage spike as a buffer-full signal and incorrectly add capacitance despite low buffered

energy. In extreme cases, the voltage spike may exceed component absolute limits.

The size of the last-level buffer Clast constrains the number N and size Cunit of each ca-

pacitor in a bank in order to keep voltage below REACT ’s buffer-full threshold during a

parallel→series transition. A larger Cunit contains more energy and thus pulls voltage higher

when switched from parallel to series. Equation 4.1 gives the last-level buffer voltage after

switching a bank to series at a trigger voltage Vlow:

Vnew =
(NVlow)(Cunit/N)

Clast + Cunit/N
+

Vlow ∗ Clast

Clast + Cunit/N
(4.1)

Constraining Vnew < Vhigh and solving for Cunit yields the absolute limit for Cunit (Equa-

tion 4.2). Note that Cunit is only constrained if the parallel→series transition at Vlow produces

a voltage above Vhigh:

Cunit <
NClast(Vhigh − Vlow)

NVlow − Vhigh
(4.2)

4.3.4 REACT Software Interface

REACT ’s standalone hardware design means that the software component running on the

target microcontroller is minimal. The software subsystem monitors for incoming over- or

under-voltage signals from REACT ’s voltage instrumentation and maintains a state machine

for each capacitor bank. Each capacitor bank is disconnected at startup; on an overvoltage
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signal from REACT ’s hardware, the software directs REACT to connect a new capacitor

bank in the series configuration. A second overvoltage signal3 causes REACT to reconfigure

the newly-connected bank to parallel; on the next overvoltage signal, REACT connects a

second capacitor bank, and so on. REACT similarly steps capacitor banks in the opposite

direction when an undervoltage signal arrives.

My proof-of-concept REACT implementation uses external voltage detectors with hard-

wired thresholds to supply over/undervoltage signals to the software component and varies

capacitance to keep supply voltage within a range corresponding to the limits for my load

microcontroller (2.0-3.4V). One possible extension to REACT is to instead use on-chip ana-

log comparators or ADCs and redefine these thresholds in software, enabling developers to

dynamically change the target operating voltage at different points in the program. Decou-

pling supply voltage from buffered energy in this way has both functional benefits (some

operations, like writes to Flash memory, require a higher supply voltage) and performance

benefits (e.g., keeping the input to a voltage regulator at its most efficient operating point).

Software-Directed Longevity

REACT ’s software component requires no active programmer intervention or code changes

aside from setting voltage thresholds, initializing each bank state machine, and setting the

order to connect and disconnect banks. Software does not need to know the details (N , Cunit)

of each bank, although this information with the state of each bank gives a coarse idea of the

current buffered energy. Because REACT only changes capacitance when the bank is near-

full or near-empty, capacitance level is an effective surrogate for stored energy. Application

code can use this feedback to set longevity guarantees through REACT ’s software interface.
3REACT polls the over/undervoltage signals using an internal timer rather than edge-sensitive interrupts

to handle cases such as a high enough power input that the capacitance step does not pull supply voltage
below Vlow.
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Bank 0 1 2 3 4 5
Capacitor Size (µF ) 770 220 440 880 880 5000
Capacitor Count 1 3 3 3 3 2

Table 4.1: Bank size and configurations for my REACT test implementation. Bank 0 is the
last-level buffer.

In preparation for a long-running or high-energy atomic operation, software sets a minimum

capacitance level corresponding to the amount of energy required and then enters a deep-

sleep mode keeping REACT ’s capacitor polling time active. As the system charges, REACT

eventually accumulates enough energy to reach the minimum capacitance level—indicating

that enough energy is stored to complete the planned operation, and pulling the system

out of its deep-sleep with enough energy to complete execution regardless of future power

conditions.

4.4 Implementation

I explore REACT ’s impact on overall efficiency, reactivity, and longevity using a hard-

ware prototype integrated into a real batteryless platform. My testbed is based on the

MSP430FR5994 [74], a popular microcontroller for energy harvesters [97, 134, 135]. For

each buffer configuration I evaluate, an intermediate circuit power gates the MSP430 to be-

gin operation once the buffer is charged to 3.3V and disconnects it when the buffer voltage

reaches 1.8V.

My REACT implementation has a range of 770 µF -18.03 mF using a set of 5 dynamic

banks, in addition to the last-level buffer, detailed in Table 4.1. I implement the capacitors

in banks 0-4 using combinations of 220 µF capacitors with max leakage current of 28 µA at

their rated voltage of 6.3V [103]. Bank 5 uses supercapacitors with approximately 0.15 µA
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leakage current at 5.5V [104].

4.4.1 Baseline Systems

I evaluate REACT against three fixed-size buffers spanning my implementation’s capaci-

tance range—770 µF, 10 mF, and 18 mF—to ensure the realized improvement is a result

of energy-adaptive behavior rather than simply different buffer capacity. To compare RE-

ACT ’s capacitor architecture to prior work on dynamic energy buffers, I also implement and

evaluate Morphy [144] for a similar capacitance range. My Morphy implementation uses

eight 2 mF capacitors with leakage current of approximately 25.2 µA at 6.3V [106] (i.e.,

slightly lower leakage than the capacitors in REACT).

Morphy uses a secondary microcontroller powered by a battery or backup capacitor to control

the capacitor array; I use a second MSP430FR5994 powered through USB, corresponding to

Morphy’s battery-powered design. Accordingly, I expect my results to slightly overestimate

Morphy’s performance in the fully-batteryless case as the system does not have to power the

Morphy controller or charge a backup capacitor in my implementation. Seven of the eight

capacitors in the array are available to reconfigure, with one task capacitor kept in parallel

to smooth voltage fluctuations from switching. I evaluate the same subset of eleven possible

configurations for the remaining seven capacitors as is done in the original Morphy work,

resulting in a capacitance range for my Morphy implementation of 250 µF -16 mF .

4.4.2 Computational Backend

To explore how REACT affects performance across a range of system demands—focusing

on diverse reactivity and longevity requirements—I implement four software benchmarks:
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• Data Encryption (DE): Continuously perform AES-128 encryptions in software.

This application has no reactivity requirements, low persistence requirements, and a

predictable power draw; I use it as a baseline to explore REACT ’s software and power

overhead. Figure of Merit: Number of AES encryptions completed, not including en-

cryptions interrupted by power loss.

• Sense and Compute (SC): Exit a deep-sleep mode once every five seconds second

to sample and digitally filter readings from a low-power microphone [36]. This bench-

mark represents systems which value high reactivity and can accept low persistence;

individual atomic measurements are low-energy, but the system must be online to take

the measurements. Figure of Merit: Number of sensing tasks completed, not including

samples or processing interrupted by power loss.

• Radio Transmission (RT): Send buffered data over radio [57, 101] to a base station.

Data transmission is an example of an application with high persistence requirements

(radio transmissions are atomic and energy-intensive) and low reactivity requirements

(transmitting data may be delayed until energy is available). Figure of Merit: Number

of transmissions completed, not including transmissions interrupted by power loss.

• Packet Forwarding (PF): Listen for and retransmit incoming data over the radio.

Timely operation demands both high persistence and reactivity to successfully receive

and retransmit data. Figures of Merit: Packets received and transmitted, not including

operations interrupted by power loss.

I emulate the power consumption of the necessary peripherals for each benchmark by toggling

a resistor connected to a digital output on the MSP430, with values for each benchmark

chosen to match the relevant peripheral. The reactivity-focused benchmarks (SC and PF)

have deadlines that may arrive while the system is off; I use a secondary MSP430 to deliver
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Data Encrypt Sense and Compute Radio Transmit
Buffer 770µ 10m 17m Morphy REACT 770µ 10m 17m Morphy REACT 770µ 10m 17m Morphy REACT
RF Cart 1275 1574 1831 1745 1711 50 81 104 77 83 22 53 56 38 48
RF Obs. 666 472 0 357 576 44 28 0 39 49 4 6 0 0 3
RF Mob. 810 1004 645 801 1038 52 50 40 53 84 4 13 12 4 15
Sol. Camp. 6666 7290 7936 8194 9756 330 353 367 398 439 1376 1457 1542 1059 1426
Sol. Comm. 2168 2186 2554 2399 2232 88 110 130 133 154 8 40 48 31 34

Mean 2317 2505 2593 2699 3063 113 124 128 140 162 283 314 332 226 313

Table 4.2: Performance by figure of merit on the DE, SC, and RT benchmarks, across traces
and energy buffers.

these events. A deployed system may use remanence-based timekeepers [28] to track internal

deadlines despite power failures for the SC benchmark, while incoming packets as in the

PF benchmark would arrive from other systems. Although I evaluate each benchmark in

isolation, full systems are likely to exercise combinations of each requirement—one platform

should support all reactivity, persistence, and efficiency requirements.

4.4.3 Energy Harvesting Frontend

Energy volatility makes repeatable experimentation with batteryless devices difficult; uncon-

trollable environmental changes often have an outsized effect on energy input and obfuscate

differences in actual system performance. I make my experiments repeatable and consistent

using a programmable power frontend inspired by the Ekho [49] record-and-replay platform.

The power controller supplies the energy buffer using a high-drive Digital-to-Analog Con-

verter (DAC), measures the load voltage and input current using a sense resistor, and tunes

the DAC to supply a programmed power level. I evaluate REACT emulating both solar (5

cm2, 22% efficient cell [133]) and RF energy (915 MHz dipole antenna [114]).
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Trace Time (s) Avg. Pow. (mW) Power CV*
RF Cart 313 2.12 103%

RF Obstruction 313 0.227 61%
RF Mobile 318 0.5 166%

Solar Campus 3609 5.18 207%
Solar Commute 6030 0.148 333%

Table 4.3: Details of each power trace. *CV = Coefficient of Variation.

4.5 Evaluation

I evaluate REACT alongside the baseline buffers running each benchmark under three RF

and two solar traces from publicly available repositories [4, 40], representative of power

dynamics for small energy harvesting systems. I record the RF traces in an active office en-

vironment using a commercial harvester and transmitter [112, 113] and use solar irradiance

traces from the Enhants mobile irradiance dataset [40]; Table 4.3 gives a short summary of

each trace. These traces show the power variability common for IoT-scale harvesters: envi-

ronmental changes (e.g., ambient RF levels, time of day) affect average input power, while

short-term changes such as orientation cause instantaneous variation even if the environment

is unchanged. I apply each trace using the power replay system described in § 4.4.3; once

the trace is complete, I let the system run until it drains the buffer capacitor.

4.5.1 Software and Energy and Overhead

Figure 4.6 illustrates REACT ’s behavior through the last-level buffer voltage when varying

capacitance; the inset focuses on REACT ’s voltage output as it expands to capture energy

(also shown is the voltage of the comparable Morphy array). From a cold start REACT

only charges the last-level buffer—rapidly reaching the enable voltage and then the upper
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voltage threshold (3.5V). REACT then adds a series-configured capacitor bank to capture

excess incoming energy. Voltage drops as the system temporarily operates exclusively from

the last-level buffer while harvested energy goes towards charging the new capacitance.

As power input falls, REACT ’s output voltage falls below the upper threshold voltage—

indicating REACT is operating at an efficient capacitance point. At t ≈ 450s the last-level

buffer is discharged to the lower threshold and REACT begins switching banks into series

mode to boost their output voltage and charge the last-level buffer, visible in Figure 4.6 as

five voltage spikes corresponding to each capacitor bank—sustaining operation until no more

energy is available at t ≈ 500s.

I characterize REACT ’s software overhead by running the DE benchmark on continuous

power for 5 minutes with and without REACT ’s software component, which periodically

interrupts execution to measure the capacitor bank. At a sample rate of 10 Hz, REACT

adds a 1.8% penalty to software-heavy applications. I measure REACT ’s power overhead by

comparing the execution time of systems running the DE benchmark using REACT and the

770 µF buffer after charging each to their enable voltage. Based on this approach I estimate

that my implementation of REACT introduces a 68 µW power draw, or ∼14 µW per bank.

4.5.2 Characterization

Table 4.4 details the cost at scale of REACT compared to Morphy for a capacitor network

consisting of eight 100mF supercapacitors. Considering the same supercapacitors and switch

ICs as in the original Morphy implementation [144], REACT using four two-capacitor banks

is approximately 25% less expensive than Morphy owing to its simpler capacitor switching

structure: REACT requires one Double-Pole-Double-Throw (DPDT) and one Single-Pole-

Single-Throw (SPST) switch per bank, corresponding to six switch ICs (as each IC contains
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Device 1000x
Unit Cost

Morphy REACT
Count Cost Count Cost

Supercap. [104] $1.54 9 $13.87 8 $12.33
Switch IC [33] $1.53 12 $18.36 6 $9.18
Ideal Diode [71] $0.27 1 $0.27 8 $2.16

Ceramic Cap. [103] $0.45 0 $0 4 $1.82
Comparator IC [75] $0.77 0 $0 1 $0.77
Detector IC [126] $0.26 0 $0 2 $0.52
Control MCU [100] $2.37 1 $2.37 0 $0

RTC [25] $1.08 1 $1.08 0 $0
Platform Cost $35.94 $26.77

Table 4.4: Cost comparison between REACT and Morphy implementations targeting the
same capacitance range.

two SPDT switches which can be combined to form one DPDT switch). The Morphy network

requires one DPDT and one SPST switch per capacitor, plus an additional SPST switch

to fully connect the network. The battery-free version of Morphy requires an additional

capacitor and diode to power the Morphy controller; following the original Morphy design,

I use the same type of capacitor as in the switching network. Other cost differences (i.e.,

REACT ’s diodes and voltage instrumentation versus Morphy’s secondary microcontroller

and real-time clock) are relatively minor as capacitor and switch costs dominate overall cost.

Designers can tune the structure of the capacitor network to vary aspects of REACT ’s

performance. One alternative for the eight-capacitor network described above is to organize

REACT using two four-capacitor banks; this design does not significantly change unit cost

(each four-capacitor bank requires one SPST and three DPDT switches, and the overall

system requires half as many diodes) and increases efficiency by extracting more energy

from each capacitor bank (§4.3.3). The tradeoff is that using fewer and larger banks reduces

the number of possible capacitance configurations and requires increasing the size of the

last-level buffer to smooth voltage spikes, limiting reactivity from a cold start. In practice,

application demands will determine the ideal REACT network and corresponding balance

of efficiency and flexibility.
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Buffer 770 µF 10 mF 17 mF Morphy REACT
RF Cart 6.65 17.73 31.27 5.51 6.65
RF Obs. 14.58 223.07 - 6.50 16
RF Mob. 6.90 148.10 239.88 5.65 6.38
Sol. Camp. 42.11 737.39 741.42 35.59 41.26
Sol. Comm. 119.60 196.30 213.00 108.10 130.6

Mean 37.97 264.92 306.39 32.27 40.18
Table 4.5: System latency (seconds) across traces and energy buffers. - indicates system
never begins operation.

4.5.3 REACT Minimizes System Latency

Table 4.5 details the time it takes each system to begin operation, across power traces and

energy buffers (charge time is software-invariant and constant across benchmarks). Latency

is driven by both capacitor size and environment—the 10mF buffer is ∼13x larger than the

770µF buffer and takes on average 7x longer to activate the system across my traces. High-

capacity static buffers incur a larger latency penalty even if mean power input is high if much

of that power is contained in a short-term spike later in the trace (e.g., for the Solar Campus

trace), but these dynamics are generally impossible to predict at design time. By exclusively

charging the last-level buffer while the rest of the system is off, REACT matches the latency

of the smallest static buffer—an average of 7.7x faster than the equivalent-capacity 17 mF

buffer, which risks failing to start at all. Morphy further reduces system latency because

its smallest configuration is smaller than REACT ’s last-level buffer (250 µF vs 770 µF ),

although the limited reduction in average latency compared to the reduction in capacitance

(Morphy realizes an average 20% reduction in latency over REACT using a 68% smaller

capacitance) suggests that further reducing capacitance yields diminishing latency returns

in realistic energy environments.

Minimizing latency improves reactivity-bound applications such as the SC and PF bench-
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marks; this effect is visible in Table 4.2 as the 770 µF buffer outperforms larger ones in the

SC benchmark for relatively low-power traces (RF Mobile/Obstructed). REACT inherits

the latency advantage due to the small last-level buffer, similarly improving performance

on each power trace. Morphy realizes a similar performance improvement over the static

systems, but ultimately underperforms REACT as a result of inefficient capacitor switching

(§ 4.5.6). Small static buffers enable low-latency operation, but at the cost of energy capac-

ity. As power input increases, the latency penalty of large buffers fades and their increased

capacity enables them to operate for longer—resulting in higher performance for larger static

buffers under high-power traces (RF Cart, Solar Campus). Smaller buffers, in turn, become

less efficient as they must burn more incoming energy off as waste heat.

4.5.4 REACT Maximizes Energy Capacity

Figure 4.6 illustrates the system-level effects of the capacity-latency tradeoff, and how RE-

ACT avoids this tradeoff through energy-adaptive buffering. The small 770µF buffer charges

rapidly, but reaches capacity and discharges energy when it does not have work to match

incoming power (illustrated by clipping at 3.6V on the 770 µF line). The 10 mF buffer sacri-

fices latency for capacity—starting operation 21x later than the smaller buffer, but avoiding

overvoltage. Morphy begins execution early with a small capacitance, but its lossy switching

mechanism means it does not overall outperform the 770µF buffer. In contrast, REACT

achieves low latency, high efficiency, and high capacity by efficiently expanding capacitance

as necessary after enabling the system.

Tables 4.2 and 4.6 show that high capacity is valuable when average input power exceeds

output power (e.g., DE and SC benchmarks executed under the RF Cart trace), or when

peak power demand is uncontrollable and uncorrelated with input (e.g., the PF benchmark
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Figure 4.6: Buffer voltage and on-time for the SC benchmark under RF Mobile power. Solid
bars indicate when the system is operating.
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Buffer 770 uF 10 mF 17 mF Morphy REACT
Packets Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx
RF Cart 22 10 49 49 48 48 55 22 53 52
RF Obs. 4 4 4 4 0 0 2 0 3 0
RF Mob. 11 4 14 13 9 9 19 0 38 5
Sol. Camp. 163 163 240 240 196 196 206 204 284 277
Sol. Comm. 72 8 35 35 33 33 85 14 84 63

Mean 54 38 68 68 57 57 73 48 92 80
Table 4.6: Packets successfully received and retransmitted during the Packet Forwarding
benchmark.

executed on Solar Campus, where both power supply and demand are concentrated in short

bursts). In both cases, high-capacity systems store excess energy to continue operation even if

future power input falls or demand rises. REACT efficiently expands to capture all incoming

energy during periods of high net input power, matching or beating the performance of the

10 mF and 17 mF systems when they outperform the small 770 µF buffer.

4.5.5 REACT Provides Flexible, Efficient Longevity

I evaluate REACT ’s software-directed longevity guarantees (§ 4.3.4) on the longevity-bound

RT and PF benchmarks. I compare REACT to the 770 µF buffer, which cannot sustain a

full transmission without additional input power. Figure 4.7 illustrates this limitation, as

the 770 µF system charges quickly but wastes power on doomed-to-fail transmissions when

incoming power cannot make up for the deficit and the system powers off before completing a

transmission. This shortcoming is reflected in Table 4.2, where the 770 µF system ultimately

significantly underperforms the other buffers. I augment the RT benchmark code for my

REACT implementation to include a minimum capacitance level for REACT , below which
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Figure 4.7: Buffer voltage and on-time for the 770 µF system running the RT benchmark
under the RF Cart trace. Solid bars indicate when the system is operating.

the system waits for more energy in a low-power sleep mode. Leveraging REACT ’s variable

capacitance allows software to buffer energy to guarantee completion, more than doubling

the number of successful transmissions and ultimately outperforming even the larger buffers.

I use the same approach to execute the RT benchmark on my Morphy implementation.

Similar to REACT , Morphy varies capacitance to keep supply voltage within an acceptable

level for the application microcontroller while also waiting to gather enough energy to power

a full transmission. Morphy’s underperformance compared to both REACT and the static

buffers is a result of Morphy’s capacitor network design—as Morphy reconfigures the ca-

pacitor array to increase capacitance, stored energy is dissipated as current flows between

capacitors in the network. This energy dissipation dramatically reduces Morphy’s end-to-

end performance, particularly in systems where Morphy must switch capacitance to ensure

success (i.e., the RT and PF benchmarks). REACT ’s isolated capacitor banks eliminate this

problem by restricting current flow during switching; the energy savings are reflected in the
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end-to-end performance, where REACT completes on average 38% more transmissions than

Morphy.

Fungible Energy Storage

A unified buffer means that energy is fungible, and REACT is flexible: software can re-

define or ignore previous longevity requirements if conditions or priorities change. The PF

benchmark (Table 4.6) shows the value of energy fungibility using two tasks with distinct

reactivity and longevity requirements. Receiving an incoming packet requires a moderate

level of longevity, but is uncontrollable and has a strict reactivity requirement (the system

can only receive a packet exactly when it arrives). Re-transmission requires more energy but

has no deadline. Software must effectively split energy between a controllable high-power

task and an uncontrollable lower-power task.

I again use the minimum-capacitance approach to set separate longevity levels for each task,

using a similar approach for my Morphy implementation. When the system has no packets

to transmit, it waits in a deep-sleep until receiving an incoming packet. If REACT contains

sufficient energy when the packet arrives, it receives and buffers the packet to later send.

REACT then begins charging for the transmit task, forwarding the buffered packet once

enough energy is available. If another packet is received while REACT is charging for the

transmit task, however, software disregards the transmit-associated longevity requirement

to execute the receive task if sufficient energy is available.

Table 4.6 shows that REACT outperforms all static buffer designs on the PF benchmark

by efficiently addressing the requirements of both tasks, resulting in a mean performance

improvement of 54%. REACT ’s maximal reactivity enables it to turn on earlier and begin

receiving and buffering packets to send during later periods of high power, while its high
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capacity enables it to make the most of incoming energy during those high periods. Software-

level longevity guarantees both ensure the system only begins receive/transmit operations

when enough energy is available to complete them, and that software can effectively allocate

energy to incoming events as needed. Although Morphy enables the same software-level

control of energy allocation, the energy dissipated when switching capacitors in the inter-

connected array reduce its performance on the PF benchmark to below that of the best

performing static buffer.

4.5.6 REACT Improves End-to-End System Efficiency

Optimizing buffer behavior maximizes energy available to the end system for useful work.

Figure 4.8 illustrates the aggregate performance of REACT compared to the baselines across

the benchmarks and power traces I evaluate; I find that REACT improves performance over

the equally-reactive 770 µF buffer by an average of 39.1%, over the equal-capacity 17 mF

buffer by 19.3%, and over the next-best-efficient 10 mF buffer by 18.8%. Compared to

Morphy, REACT improves aggregate performance by 26.2%—demonstrating the necessity

of REACT ’s bank isolation approach and boosting performance where the state of the art

underperforms static approaches. In extreme cases where the system is always operating in an

energy surplus or deficit, REACT ’s quiescent power consumption causes it to underperform

suitable static buffers. In the common case, however, volatile power conditions expose the

latency, longevity, and efficiency-related shortcomings of static buffer designs and expose the

value of REACT ’s efficient variable-capacitance approach.
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Figure 4.8: Average buffer performance quantified by figures of merit across power traces for
each benchmark, normalized to REACT .

4.6 Conclusion

Batteryless systems operate on unreliable and volatile power, but use fixed-size buffers which

waste energy and functionally limit systems when allocated capacity is a poor fit for short-

term power dynamics. REACT stores energy in a fabric of reconfigurable capacitor banks,

varying equivalent capacitance according to current energy supply and demand—adding ca-

pacitance to capture surplus power and reclaiming energy from excess capacitance. REACT ’s

energy-adaptive approach maximizes reactivity and capacity to ensure all incoming energy

is captured and efficiently delivered to sensing, computing, and communication devices. My
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hardware evaluation on real-world power traces shows that REACT reduces system latency

by an average of 7.7x compared to an equivalent-sized static buffer and improves throughput

by an average of 25.6% over any static buffer system, while incorporating software direction

allows REACT to provide flexible task longevity guarantees. Compared to state-of-the-art

switched capacitor systems, REACT ’s efficient switching architecture improves performance

by an average of 26.2%.

REACT ’s runtime-configurable buffering technique eliminates the tradeoff between system

latency and longevity, and affords designers greater control over how batteryless devices re-

spond to incoming power. My results indicate that energy-responsive reconfiguration of hard-

ware is an effective approach to both maximizing energy efficiency and system functionality,

opening the door for future work leveraging energy-adaptive hardware and reconfiguration.



Chapter 5

Conclusion and Future Work

Energy harvesting systems have the potential to revolutionize mobile computing by freeing

high-performance, ultra-low-power digital systems from the batteries that hold them back.

While today’s batteryless systems come with fundamental drawbacks that currently preclude

widespread deployment, this thesis provides the tools to overcome three major obstacles to

practical and performant batteryless systems. TotalRecall brings high-performance intermit-

tent operation to tens of thousands of platforms by removing the requirement for systems to

integrate high-performance non-volatile memory. Failure Sentinels and REACT introduce

hardware peripherals and platforms designed from the ground up for efficient batteryless

operation, showing the potential of hardware tailor-made for batteryless operation. These

platforms lay the groundwork for and guide future research and development towards truly

effective, next-generation batteryless computing systems.

5.1 Future Work

While the research I describe above addresses major obstacles on the way towards a fully

batteryless future, it also exposes new challenges for mobile computing systems. Here, I

describe several research directions inspired by the work above.

116
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5.1.1 Extending SRAM-based Batteryless Computing

TotalRecall lays the foundation for ubiquitous NVM-invariant intermittent computing, but

challenges remain. TotalRecall inherits the limitations of just-in-time checkpointing systems

(§1.1), including the need for hardware support as well as the inability to support atomic op-

erations. In-place checkpoints complicate simple extensions of automatic (i.e., programmer-

or compiler-directed) systems, as any program execution invalidates the checksum verifying

SRAM’s integrity—no ”known-good” version of program state exists. As even the state of

the art just-in-time systems depend on rollback mechanisms developed in automatic check-

pointing systems [95], developing these techniques for SRAM-based checkpointing is crucial

to make the system truly practical.

To that end, I plan to develop programming models and compiler frameworks that enable par-

tial state checkpointing for SRAM-based intermittent computing. As with previous automatic

checkpointing techniques, the primary technical challenge will be balancing checkpointing

and re-execution overhead—with the added obstacle of minimizing the amount of modified

state between checkpoints (to reduce the number of checksums recalculated throughout ex-

ecution). I will engage with programming language and compiler experts to see how best to

overcome these technical hurdles to ubiquitous SRAM-based intermittent computation.

5.1.2 Persistent Peripherals for Intermittent Systems

While a great deal of work has been done to ensure intermittent software execution on bat-

teryless microcontrollers is correct and efficient, the peripheral devices (e.g., sensors, radios,

memories) connected to these systems have received comparatively little attention. Sound

peripheral operation is essential to batteryless systems, as many projected deployments focus

on sensing and data transmission using on-chip peripheral devices.
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I envision two major research thrusts targeting intermittent peripheral operation. The first

thrust leverages the observation that many low-power peripherals 1) operate at lower mini-

mum supply voltages than the processors controlling them, and 2) are capable of software-free

operation by either continuing independently (e.g., a real-time clock) or by buffering sam-

ples in anticipation of the processor eventually powering back on (e.g., an analog-to-digital

converter). The major research challenge here is detecting when peripheral devices correctly

continued operation without software knowledge; to this end, I will develop on-chip hard-

ware systems that operate at these low voltage levels to inform software of when peripheral

operation continued.

While many peripheral devices can correctly continue operation at low voltages without

modification, fully intermittent systems will ultimately require fully intermittent periph-

eral devices. The complexity of such devices varies significantly, ranging from simple pro-

grammable analog/digital converters consisting of only shift registers and analog hardware

to complex radio transceivers with integrated microcontrollers. My second research thrust

will explore modifying these systems to work on intermittent power by developing new hard-

ware approaches and protocol designs to reliably and correctly interface with other devices

both on- and off-chip.

5.1.3 Systems and Architectures for Emerging Memories

Intermittent systems demonstrate both the potential and current limitations of emerg-

ing non-volatile memories such as Ferroelectric RAM (FRAM) and Magnetoresistive RAM

(MRAM) (collectively referred to as Non-Volatile RAMs, or NVRAMs). Compared to the

previous generation of NVMs, these memories enable low-power, high-speed, and high-

endurance writes—at the cost of reduced read performance, causing FRAM and MRAM
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based systems to incur a significant energy and time penalty during common-case code exe-

cution. Re-imagining system design around the unique tradeoffs exhibited by these memories

is a promising avenue for increased performance, both for batteryless and traditional em-

bedded systems.

I envision research spanning the system stack to support these memories. Today’s NVRAM-

based systems include a blend of NVRAM and SRAM, while NVRAM’s flexibility allows

it to store both code and data—freeing up higher-performance but scarcer SRAM to serve

the most-accessed information. I first intend to implement this ”intelligent caching” support

for hybrid NVRAM/SRAM systems in software to target current platforms, then extend

my work into the hardware domain to bring NVRAM platforms up to and beyond the

performance of more mature memory technologies.



Bibliography

[1] Saad Ahmed, Qurat ul Ain, Junaid Haroon Siddiqui, Luca Mottola, and Muham-

mad Hamad Alizai. Intermittent computing with dynamic voltage and frequency scal-

ing. In Proceedings of the 2020 International Conference on Embedded Wireless Sys-

tems and Networks, EWSN ’20, page 97–107, USA, 2020. Junction Publishing. ISBN

9780994988645.

[2] Miran Alhaideri, Michael Rushanan, Denis Foo Kune, and Kevin Fu. The moo and ce-

ment shoes: Future directions of a practical sense-control-actuate application, Septem-

ber 2013. URL http://terraswarm.org/pubs/111.html. Presented at First Inter-

national Workshop on the Swarm at the Edge of the Cloud (SEC’13 @ ESWeek),

Montreal.

[3] M. Alioto and G. Palumbo. Impact of supply voltage variations on full adder delay:

Analysis and comparison. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 14(12):1322–1335, 2006. doi: 10.1109/TVLSI.2006.887809.

[4] Anon. Rf traces, October 2022. https://anonymous.4open.science/r/rf_

traces-4B3E/README.md.

[5] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,

Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar

Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin

Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson,

Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The

120

http://terraswarm.org/pubs/111.html
https://anonymous.4open.science/r/rf_traces-4B3E/README.md
https://anonymous.4open.science/r/rf_traces-4B3E/README.md


BIBLIOGRAPHY 121

Rocket chip generator. Technical Report UCB/EECS-2016-17, EECS Department,

University of California, Berkeley, Apr 2016.

[6] Abu Bakar, Alexander G. Ross, Kasim Sinan Yildirim, and Josiah Hester. Rehash: A

flexible, developer focused, heuristic adaptation platform for intermittently powered

computing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 5(3), sep 2021.

doi: 10.1145/3478077. URL https://doi.org/10.1145/3478077.

[7] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi,

G. V. Merrett, and L. Benini. Hibernus++: A self-calibrating and adaptive system for

transiently-powered embedded devices. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 35(12):1968–1980, March 2016.

[8] Domenico Balsamo, Alex Weddell, Geoff Merrett, Bashir Al-Hashimi, Davide Brunelli,

and Luca Benini. Hibernus: Sustaining Computation during Intermittent Supply for

Energy-Harvesting Systems. In IEEE Embedded Systems Letters, 2014.

[9] N. A. Bhatti and L. Mottola. Harvos: Efficient code instrumentation for transiently-

powered embedded sensing. In 2017 16th ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN), pages 209–220, 2017.

[10] M. Bhushan and M. B. Ketchen. Generation, elimination and utilization of harmonics

in ring oscillators. In 2010 International Conference on Microelectronic Test Structures

(ICMTS), pages 108–113, 2010. doi: 10.1109/ICMTS.2010.5466847.

[11] M. Bhushan, A. Gattiker, M. B. Ketchen, and K. K. Das. Ring oscillators for cmos

process tuning and variability control. IEEE Transactions on Semiconductor Manu-

facturing, 19(1):10–18, 2006.

[12] James Blackman. What is mmtc in 5g nr, and

https://doi.org/10.1145/3478077


122 BIBLIOGRAPHY

how does it impact nb-iot and lte-m, October 2019.

https://enterpriseiotinsights.com/20191016/channels/fundamentals/what-is-mmtc-in-

5g-nr-and-how-does-it-impact-nb-iot-and-lte-m.

[13] J. Blank and K. Deb. Pymoo: Multi-objective optimization in python. IEEE Access,

8:89497–89509, 2020.

[14] Michael Buettner, Richa Prasad, Alanson Sample, Daniel Yeager, Ben Greenstein,

Joshua R. Smith, and David Wetherall. Rfid sensor networks with the intel wisp. In

Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys

’08, page 393–394, New York, NY, USA, 2008. Association for Computing Machinery.

ISBN 9781595939906. doi: 10.1145/1460412.1460468. URL https://doi.org/10.

1145/1460412.1460468.

[15] Michael Buettner, Ben Greenstein, and David Wetherall. Dewdrop: An energy-aware

runtime for computational rfid. In Proceedings of the 8th USENIX Conference on

Networked Systems Design and Implementation, NSDI’11, page 197–210, USA, 2011.

USENIX Association.

[16] Thomas D Burd, Trevor A Pering, Anthony J Stratakos, and Robert W Brodersen. A

dynamic voltage scaled microprocessor system. IEEE Journal of solid-state circuits,

35(11):1571–1580, 2000.

[17] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu. New paradigm of predictive

mosfet and interconnect modeling for early circuit simulation. In Proceedings of the

IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044), pages 201–

204, 2000.

[18] T. Chan, P. Gupta, A. B. Kahng, and L. Lai. Ddro: A novel performance monitoring

https://doi.org/10.1145/1460412.1460468
https://doi.org/10.1145/1460412.1460468


BIBLIOGRAPHY 123

methodology based on design-dependent ring oscillators. In Thirteenth International

Symposium on Quality Electronic Design (ISQED), pages 633–640, 2012.

[19] J. Choi, H. Joe, Y. Kim, and C. Jung. Achieving stagnation-free intermittent com-

putation with boundary-free adaptive execution. In IEEE Real-Time and Embedded

Technology and Applications Symposium, RTAS, pages 331–344, April 2019.

[20] Jongouk Choi, Qingrui Liu, and Changhee Jung. Cospec: Compiler directed specu-

lative intermittent computation. In International Symposium on Microarchitecture,

MICRO, pages 399–412, 2019.

[21] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. Compiler-directed

high-performance intermittent computation with power failure immunity. In 2022

IEEE 28th Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 40–54, 2022. doi: 10.1109/RTAS54340.2022.00012.

[22] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Changwoo Min, and Changhee Jung.

Write-light cache for energy harvesting systems. In Proceedings of the 50th Annual

International Symposium on Computer Architecture, ISCA ’23, New York, NY, USA,

2023. Association for Computing Machinery. ISBN 9798400700958. doi: 10.1145/

3579371.3589098. URL https://doi.org/10.1145/3579371.3589098.

[23] Alexei Colin and Brandon Lucia. Chain: Tasks and channels for reliable intermittent

programs. In International Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA, pages 514–530, October 2016.

[24] Alexei Colin, Emily Ruppel, and Brandon Lucia. A reconfigurable energy storage

architecture for energy-harvesting devices. In Proceedings of the Twenty-Third Inter-

national Conference on Architectural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’18, page 767–781, New York, NY, USA, 2018. Association for

https://doi.org/10.1145/3579371.3589098


124 BIBLIOGRAPHY

Computing Machinery. ISBN 9781450349116. doi: 10.1145/3173162.3173210. URL

https://doi.org/10.1145/3173162.3173210.

[25] Abracon Corporation. AB08X5 Real-Time Clock Family, October 2014. https://

abracon.com/Precisiontiming/AB08X5-RTC.PDF.

[26] M. Danesh, S. T. Chandrasekaran, and A. Sanyal. Ring oscillator based delta-sigma

adcs. In 2018 25th IEEE International Conference on Electronics, Circuits and Systems

(ICECS), pages 113–116, 2018.

[27] John H. Davies. MSP430 Microcontroller Basics. Elsevier Ltd., 1 edition, 2008. ISBN

0750682760.

[28] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław Pawełczak,

and Josiah Hester. Reliable timekeeping for intermittent computing. In Proceedings of

the Twenty-Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’20, page 53–67, New York, NY, USA,

2020. Association for Computing Machinery. ISBN 9781450371025. doi: 10.1145/

3373376.3378464. URL https://doi.org/10.1145/3373376.3378464.

[29] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. Battery-

free game boy. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 4(3), sep 2020.

doi: 10.1145/3411839. URL https://doi.org/10.1145/3411839.

[30] Bradley Denby and Brandon Lucia. Orbital edge computing: Nanosatellite constella-

tions as a new class of computer system. In Proceedings of the Twenty-Fifth Interna-

tional Conference on Architectural Support for Programming Languages and Operat-

ing Systems, ASPLOS ’20, page 939–954, New York, NY, USA, 2020. Association for

Computing Machinery. ISBN 9781450371025. doi: 10.1145/3373376.3378473. URL

https://doi.org/10.1145/3373376.3378473.

https://doi.org/10.1145/3173162.3173210
https://abracon.com/Precisiontiming/AB08X5-RTC.PDF
https://abracon.com/Precisiontiming/AB08X5-RTC.PDF
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3411839
https://doi.org/10.1145/3373376.3378473


BIBLIOGRAPHY 125

[31] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design

of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of

Solid-State Circuits, 9(5):256–268, Oct 1974.

[32] H. Desai and B. Lucia. A power-aware heterogeneous architecture scaling model for

energy-harvesting computers. IEEE Computer Architecture Letters, 19(1):68–71, 2020.

[33] Analog Devices. 0.5 Ω CMOS 1.65 V to 3.6 V Dual SPDT/2:1 Mux

in Mini LFCSP Package, March 2012. https://www.analog.com/media/en/

technical-documentation/data-sheets/adg824.pdf.

[34] Analog Devices. Micropower, 3-Axis, ±2g/±4g/±8gDigitalOutput MEMS Accelerom-

eter, 2015. https://www.analog.com/media/en/technical-documentation/

data-sheets/ADXL362.pdf.

[35] Analog Devices. Ltspice, September 2020. https://www.analog.com/en/

design-center/design-tools-and-calculators/ltspice-simulator.html.

[36] Knowles Electronics. SPU0414HR5H-SB, December 2012. https://www.mouser.com/

datasheet/2/218/knowles_01232019_SPU0414HR5H_SB-1891952.pdf.

[37] K. Ganesan, J. San Miguel, and N. Enright Jerger. The what’s next intermittent com-

puting architecture. In IEEE International Symposium on High Performance Computer

Architecture, HPCA, pages 211–223, Feb 2019.

[38] G. Ge, C. Zhang, G. Hoogzaad, and K. A. A. Makinwa. A single-trim cmos bandgap

reference with a 3σ inaccuracy of ±0.15% from −40◦c to 125◦c. IEEE Journal of

Solid-State Circuits, 46(11):2693–2701, 2011.

[39] Graham Gobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc, Nathan Beck-

mann, and Brandon Lucia. Manic: A vector-dataflow architecture for ultra-low-

https://www.analog.com/media/en/technical-documentation/data-sheets/adg824.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adg824.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.mouser.com/datasheet/2/218/knowles_01232019_SPU0414HR5H_SB-1891952.pdf
https://www.mouser.com/datasheet/2/218/knowles_01232019_SPU0414HR5H_SB-1891952.pdf


126 BIBLIOGRAPHY

power embedded systems. In Proceedings of the 52nd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO ’52, page 670–684, New York,

NY, USA, 2019. Association for Computing Machinery. ISBN 9781450369381. doi:

10.1145/3352460.3358277. URL https://doi.org/10.1145/3352460.3358277.

[40] M. Gorlatova, A. Wallwater, and G. Zussman. Networking low-power energy harvesting

devices: Measurements and algorithms. In 2011 Proceedings IEEE INFOCOM, pages

1602–1610, 2011. doi: 10.1109/INFCOM.2011.5934952.

[41] Peter Gutmann. Data remanence in semiconductor devices. In USENIX Security

Symposium, USENIX Security, August 2001.

[42] V. Gutnik and A. Chandrakasan. An efficient controller for variable supply-voltage low

power processing. In 1996 Symposium on VLSI Circuits. Digest of Technical Papers,

pages 158–159, 1996.

[43] M. R. Halesh, K. R. Rasane, and H. Rohini. Design and implementation of voltage

control oscillator (vco) using 180nm technology. In Srija Unnikrishnan, Sunil Surve,

and Deepak Bhoir, editors, Advances in Computing, Communication and Control,

pages 472–478, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-

18440-6.

[44] Wang Song Hao and Ronald Garcia. Development of a digital and battery-free smart

flowmeter. Energies, 7(6):3695–3709, 2014. ISSN 1996-1073. doi: 10.3390/en7063695.

URL https://www.mdpi.com/1996-1073/7/6/3695.

[45] C. Helfmeier, C. Boit, D. Nedospasov, and J. P. Seifert. Cloning physically unclonable

functions. In International Symposium on Hardware-Oriented Security and Trust,

HOST, pages 1–6, June 2013.

https://doi.org/10.1145/3352460.3358277
https://www.mdpi.com/1996-1073/7/6/3695


BIBLIOGRAPHY 127

[46] M. Hempstead, N. Tripathi, P. Mauro, Gu-Yeon Wei, and D. Brooks. An ultra

low power system architecture for sensor network applications. In 32nd Interna-

tional Symposium on Computer Architecture (ISCA’05), pages 208–219, 2005. doi:

10.1109/ISCA.2005.12.

[47] Mark Hempstead, Gu-Yeon Wei, and David Brooks. Architecture and circuit tech-

niques for low-throughput, energy-constrained systems across technology genera-

tions. In Proceedings of the 2006 International Conference on Compilers, Archi-

tecture and Synthesis for Embedded Systems, CASES ’06, page 368–378, New York,

NY, USA, 2006. Association for Computing Machinery. ISBN 1595935436. doi:

10.1145/1176760.1176805. URL https://doi.org/10.1145/1176760.1176805.

[48] Josiah Hester and Jacob Sorber. Flicker: Rapid prototyping for the batteryless

internet-of-things. In Proceedings of the 15th ACM Conference on Embedded Net-

work Sensor Systems, SenSys ’17, New York, NY, USA, 2017. Association for Com-

puting Machinery. ISBN 9781450354592. doi: 10.1145/3131672.3131674. URL

https://doi.org/10.1145/3131672.3131674.

[49] Josiah Hester, Timothy Scott, and Jacob Sorber. Ekho: Realistic and repeatable

experimentation for tiny energy-harvesting sensors. In Proceedings of the 12th ACM

Conference on Embedded Network Sensor Systems, SenSys ’14, page 330–331, New

York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450331432.

doi: 10.1145/2668332.2668382. URL https://doi.org/10.1145/2668332.2668382.

[50] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. Tragedy of the coulombs: Feder-

ating energy storage for tiny, intermittently-powered sensors. In ACM Conference on

Embedded Networked Sensor Systems, SenSys, pages 5–16, 2015.

[51] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Holcomb, Kevin

https://doi.org/10.1145/1176760.1176805
https://doi.org/10.1145/3131672.3131674
https://doi.org/10.1145/2668332.2668382


128 BIBLIOGRAPHY

Fu, Wayne P. Burleson, and Jacob Sorber. Persistent clocks for batteryless sensing

devices. ACM Transactions on Embedded Computer Systems, 15(4):77:1–77:28, August

2016.

[52] Matthew Hicks. Clank: Architectural support for intermittent computation. In Inter-

national Symposium on Computer Architecture, ISCA, pages 228–240, 2017.

[53] D. E. Holcomb, W. P. Burleson, and K. Fu. Power-Up SRAM State as an Identifying

Fingerprint and Source of True Random Numbers. IEEE Transactions on Computers,

58(9):1198–1210, September 2009.

[54] Daniel E. Holcomb, Amir Rahmati, Mastooreh Salajegheh, Wayne P. Burleson, and

Kevin Fu. Drv-fingerprinting: Using data retention voltage of sram cells for chip

identification. In Proceedings of the 8th International Conference on Radio Frequency

Identification: Security and Privacy Issues, RFIDSec, pages 165–179, 2012.

[55] G. Huang, L. Qian, S. Saibua, D. Zhou, and X. Zeng. An efficient optimization based

method to evaluate the drv of sram cells. IEEE Transactions on Circuits and Systems

I: Regular Papers, 60(6):1511–1520, June 2013.

[56] IBM. Combating fraud with blockchain and crypto-anchors, 2018. URL https://

www.research.ibm.com/5-in-5/crypto-anchors-and-blockchain/.

[57] Fraunhofer IIS. RFicient Basic, Ultra-Low-Power WakeUp Receiver, Jan-

uary 2019. https://www.iis.fraunhofer.de/content/dam/iis/en/doc/il/ics/

ic-design/Datenblaetter/Factsheet_WakeUp_v4.pdf.

[58] Texas Instruments. MSP430 competitive benchmarking, July 2006. https:

//people.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%

20benchmarks.pdf.

https://www.research.ibm.com/5-in-5/crypto-anchors-and-blockchain/
https://www.research.ibm.com/5-in-5/crypto-anchors-and-blockchain/
https://www.iis.fraunhofer.de/content/dam/iis/en/doc/il/ics/ic-design/Datenblaetter/Factsheet_WakeUp_v4.pdf
https://www.iis.fraunhofer.de/content/dam/iis/en/doc/il/ics/ic-design/Datenblaetter/Factsheet_WakeUp_v4.pdf
https://people.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%20benchmarks.pdf
https://people.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%20benchmarks.pdf
https://people.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%20benchmarks.pdf


BIBLIOGRAPHY 129

[59] Texas Instruments. MSP430L092—MSP430L092, MSP430C09x Mixed-Signal Mi-

crocontrollers, September 2010. http://www.ti.com/lit/ds/symlink/msp430l092.

pdf.

[60] Texas Instruments. MSP430G2x53, MSP430G2x13 Mixed Signal Microcontroller

datasheet (Rev. J), 2013. http://www.ti.com/lit/ds/symlink/msp430g2553.pdf.

[61] Texas Instruments. MSP430x2xx Family User’s Guide (Rev. J), 2013. http://www.

ti.com/lit/ug/slau144j/slau144j.pdf.

[62] Texas Instruments. Msp430g2x52, msp430g2x12 mixed signal microcontroller

datasheet (rev. g), May 2013. https://www.ti.com/lit/ds/symlink/msp430g2252.

pdf.

[63] Texas Instruments. FRAM FAQs, January 2014. http://www.ti.com/lit/ml/

slat151/slat151.pdf.

[64] Texas Instruments. ADS7042 Ultra-LowPower, Ultra-Small Size, 12-Bit, 1-MSPS, SAR

ADC, 2015. https://www.ti.com/lit/ds/sbas608c/sbas608c.pdf.

[65] Texas Instruments. MSP430F5438A—MSP430F543xA, MSP430F541xA Mixed-

Signal Microcontrollers, September 2018. http://www.ti.com/lit/ds/symlink/

msp430f5438a.pdf.

[66] Texas Instruments. MSP430FR5964—MSP430FR599x, MSP430FR596x Mixed-

Signal Microcontrollers, August 2018. http://www.ti.com/lit/ds/symlink/

msp430fr5964.pdf.

[67] Texas Instruments. MSP430FR596x, MSP430FR594x Mixed-Signal Microcontrollers,

2018. https://www.ti.com/lit/ds/symlink/msp430fr5969.pdf.

http://www.ti.com/lit/ds/symlink/msp430l092.pdf
http://www.ti.com/lit/ds/symlink/msp430l092.pdf
http://www.ti.com/lit/ds/symlink/msp430g2553.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
https://www.ti.com/lit/ds/symlink/msp430g2252.pdf
https://www.ti.com/lit/ds/symlink/msp430g2252.pdf
http://www.ti.com/lit/ml/slat151/slat151.pdf
http://www.ti.com/lit/ml/slat151/slat151.pdf
https://www.ti.com/lit/ds/sbas608c/sbas608c.pdf
http://www.ti.com/lit/ds/symlink/msp430f5438a.pdf
http://www.ti.com/lit/ds/symlink/msp430f5438a.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5964.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5964.pdf
https://www.ti.com/lit/ds/symlink/msp430fr5969.pdf


130 BIBLIOGRAPHY

[68] Texas Instruments. MSP430FR698x(1), MSP430FR598x(1) Mixed-Signal Microcon-

trollers, 2018. http://www.ti.com/lit/ds/symlink/msp430fr6989.pdf.

[69] Texas Instruments. CRC Implementation with MSP430™MCUs, 2018. http://www.

ti.com/lit/an/slaa221a/slaa221a.pdf.

[70] Texas Instruments. MSP430 Flash Memory Characteristics (Rev. B), 2018. http:

//www.ti.com/lit/an/slaa334b/slaa334b.pdf.

[71] Texas Instruments. Lm66100 5.5-v, 1.5-a 79-milliohm, low iq ideal diode with input

polarity protection, June 2019. https://www.ti.com/lit/ds/symlink/lm66100.pdf.

[72] Texas Instruments. MSP430 GCC, June 2019. http://www.ti.com/lit/ug/

slau646e/slau646e.pdf.

[73] Texas Instruments. Msp432p401r, msp432p401m simplelink mixed-signal microcon-

trollers, June 2019. https://www.ti.com/lit/ds/symlink/msp432p401r.pdf.

[74] Texas Instruments. MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers,

January 2021. https://www.ti.com/lit/ds/symlink/msp430fr5994.pdf.

[75] Texas Instruments. Tlv703x and tlv704x small-size, nanopower, low-voltage compara-

tors, July 2021. https://www.ti.com/lit/ds/symlink/tlv7044.pdf.

[76] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. Hypnos: an ultra-low

power sleep mode with sram data retention for embedded microcontrollers. In Pro-

ceedings of the 2014 International Conference on Hardware/Software Codesign and

System Synthesis, CODES ’14, New York, NY, USA, 2014. Association for Com-

puting Machinery. ISBN 9781450330510. doi: 10.1145/2656075.2656089. URL

https://doi.org/10.1145/2656075.2656089.

http://www.ti.com/lit/ds/symlink/msp430fr6989.pdf
http://www.ti.com/lit/an/slaa221a/slaa221a.pdf
http://www.ti.com/lit/an/slaa221a/slaa221a.pdf
http://www.ti.com/lit/an/slaa334b/slaa334b.pdf
http://www.ti.com/lit/an/slaa334b/slaa334b.pdf
https://www.ti.com/lit/ds/symlink/lm66100.pdf
http://www.ti.com/lit/ug/slau646e/slau646e.pdf
http://www.ti.com/lit/ug/slau646e/slau646e.pdf
https://www.ti.com/lit/ds/symlink/msp432p401r.pdf
https://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
https://www.ti.com/lit/ds/symlink/tlv7044.pdf
https://doi.org/10.1145/2656075.2656089


BIBLIOGRAPHY 131

[77] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. QUICKRECALL: A

Low Overhead HW/SW Approach for Enabling Computations across Power Cycles in

Transiently Powered Computers. In International Conference on VLSI Design and

International Conference on Embedded Systems, 2014.

[78] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. Energy-Aware Memory

Mapping for Hybrid FRAM-SRAM MCUs in IoT Edge Devices. In International Con-

ference on VLSI Design and International Conference on Embedded Systems, VLSID,

2016.

[79] A. Jayaraj, M. Danesh, S. T. Chandrasekaran, and A. Sanyal. Highly digital second-

order δσ vco adc. IEEE Transactions on Circuits and Systems I: Regular Papers, 66

(7):2415–2425, 2019.

[80] B. E. Jonsson. A survey of A/D-converter performance evolution. In International

Conference on Electronics, Circuits, and Systems, ICECS, pages 766–769, Dec 2010.

[81] Goran Jovanović, Mile Stojcev, and Zoran Stamenkovic. A cmos voltage controlled

ring oscillator with improved frequency stability. Scientific Publications of the State

University of Novi Pazar: Applied Mathematics, Informatics, and Mechanics, 2:1–9,

06 2010.

[82] Raja Jurdak, Antonio G. Ruzzelli, Gregory M. P. O’hare, and C. V. Lopes. Mote-based

underwater sensor networks: Opportunities, challenges, and guidelines, 2008.

[83] Joseph Kahn, Randy Katz, and Kristofer Pister. Next Century Challenges: Mobile

Networking for ”Smart Dust”. In Conference on Mobile Computing and Networking

(MobiCom), 1999.

[84] Udo Karthaus and Martin Fischer. Fully Integrated Passive UHF RFID Transponder



132 BIBLIOGRAPHY

IC With 16.7-µ W Minimum RF Input Power. In IEEE Journal of Solid-State Circuits,

Volume 38, 2003.

[85] Kemet. Supercapacitors fm series, July 2020. https://www.mouser.com/datasheet/

2/212/1/KEM_S6012_FM-1103835.pdf.

[86] P. Koopman and T. Chakravarty. Cyclic redundancy code (crc) polynomial selec-

tion for embedded networks. In International Conference on Dependable Systems and

Networks, 2004, pages 145–154, June 2004.

[87] Madhusudan Kulkarni and Kalmeshwar Hosur. Design of a linear and wide range cur-

rent starved voltage controlled oscillator for pll. International Journal on Cybernetics

& Informatics, 2:23–30, 02 2013. doi: 10.5121/ijci.2013.2104.

[88] R. Kumar and V. Kursun. Modeling of temperature effects on nano-cmos devices with

the predictive technologies. In 2007 50th Midwest Symposium on Circuits and Systems,

pages 694–697, 2007.

[89] Silicon Labs. EFM32 Gecko Family EFM32WG Data Sheet, December 2021. https:

//www.silabs.com/documents/public/data-sheets/efm32wg-datasheet.pdf.

[90] Q. Liu, C. Jung, D. Lee, and D. Tiwari. Compiler-Directed Lightweight Checkpointing

for Fine-Grained Guaranteed Soft Error Recovery. SC, pages 228–239, November 2016.

[91] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution

model for intermittent systems. In Conference on Programming Language Design and

Implementation, PLDI, pages 575–585, 2015.

[92] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie, and

V. Narayanan. Architecture exploration for ambient energy harvesting nonvolatile

https://www.mouser.com/datasheet/2/212/1/KEM_S6012_FM-1103835.pdf
https://www.mouser.com/datasheet/2/212/1/KEM_S6012_FM-1103835.pdf
https://www.silabs.com/documents/public/data-sheets/efm32wg-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32wg-datasheet.pdf


BIBLIOGRAPHY 133

processors. In IEEE International Symposium on High Performance Computer Archi-

tecture, HPCA, pages 526–537, Feb 2015.

[93] Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang Zheng, Shuangchen Li, Yong-

pan Liu, Yuan Xie, John Sampson, and Vijaykrishnan Narayanan. Nonvolatile Pro-

cessor Architectures: Efficient, Reliable Progress with Unstable Power. In IEE Micro

Volume 36, Issue 3, 2016.

[94] Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for safe efficient

intermittent computing. In USENIX Conference on Operating Systems Design and

Implementation, OSDI, pages 129–144, November 2018.

[95] Kiwan Maeng and Brandon Lucia. Supporting peripherals in intermittent systems with

just-in-time checkpoints. In SIGPLAN Conference on Programming Language Design

and Implementation, PLDI, pages 1101–1116, 2019.

[96] Kiwan Maeng and Brandon Lucia. Adaptive low-overhead scheduling for periodic and

reactive intermittent execution. In Proceedings of the 41st ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI 2020, page

1005–1021, New York, NY, USA, 2020. Association for Computing Machinery. ISBN

9781450376136. doi: 10.1145/3385412.3385998. URL https://doi.org/10.1145/

3385412.3385998.

[97] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent execution

without checkpoints. In International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA, pages 96:1–96:30, October 2017.

[98] M. K. Mandal and B. C. Sarkar. Ring oscillators: Characteristics and applications.

Indian Journal of Pure & Applied Physics, 48(1):136–145, 2010.

https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/3385412.3385998


134 BIBLIOGRAPHY

[99] Microchip. PIC16(L)F15356/75/76/85/86, 2016. http://ww1.microchip.com/

downloads/en/devicedoc/40001866a.pdf.

[100] Microchip. PIC18(L)F65/66K40, November 2017. https://ww1.microchip.com/

downloads/en/DeviceDoc/40001842D.pdf.

[101] Microsemi. ZL70251 Ultra-Low-Power Sub-GHz RF Transceiver, March 2018. https:

//www.microsemi.com/document-portal/doc_view/132900-zl70251-datasheet.

[102] A. Mirhoseini, E. M. Songhori, and F. Koushanfar. Idetic: A high-level synthesis ap-

proach for enabling long computations on transiently-powered ASICs. In International

Conference on Pervasive Computing and Communications, PerCom, pages 216–224,

March 2013.

[103] Murata. GRM31CR60J227ME11L Chip Monolithic Ceramic Capacitor for

General. https://search.murata.co.jp/Ceramy/image/img/A01X/G101/ENG/

GRM31CR60J227ME11-01.pdf.

[104] Murata. Supercapacitors FM Series, July 2020. https://www.mouser.com/

datasheet/2/212/1/KEM_S6012_FM-1103835.pdf.

[105] Phillip Nadeua, Dina El-Damaj, Deal Glettig, Yong Lin Kong, Stacy Mo, Cody Cleve-

land, Lucas Booth, Niclas Roxhed, Robert Langer, Anantha P. Chandrakasan, and

Giovanni Traverso. Prolonged energy harvesting for ingestible devices. Nature Biomed-

ical Engineering, 1(0022), Feb 2017.

[106] Nichicon. ALUMINUM ELECTROLYTIC CAPACITORS. https://www.nichicon.

co.jp/english/products/pdfs/e-kl.pdf.

[107] University of Washington. WISP 5 GitHub, April 2014. http://www.github.com/

wisp/wisp5.

http://ww1.microchip.com/downloads/en/devicedoc/40001866a.pdf
http://ww1.microchip.com/downloads/en/devicedoc/40001866a.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001842D.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001842D.pdf
https://www.microsemi.com/document-portal/doc_view/132900-zl70251-datasheet
https://www.microsemi.com/document-portal/doc_view/132900-zl70251-datasheet
https://search.murata.co.jp/Ceramy/image/img/A01X/G101/ENG/GRM31CR60J227ME11-01.pdf
https://search.murata.co.jp/Ceramy/image/img/A01X/G101/ENG/GRM31CR60J227ME11-01.pdf
https://www.mouser.com/datasheet/2/212/1/KEM_S6012_FM-1103835.pdf
https://www.mouser.com/datasheet/2/212/1/KEM_S6012_FM-1103835.pdf
https://www.nichicon.co.jp/english/products/pdfs/e-kl.pdf
https://www.nichicon.co.jp/english/products/pdfs/e-kl.pdf
http://www.github.com/wisp/wisp5
http://www.github.com/wisp/wisp5


BIBLIOGRAPHY 135

[108] Yossef Oren, Ahmad-Reza Sadeghi, and Christian Wachsmann. On the effectiveness

of the remanence decay side-channel to clone memory-based PUFs. In International

Conference on Cryptographic Hardware and Embedded Systems, CHES, pages 107–125,

August 2013.

[109] Panasonic. Panasonic coin type lithium batteries, August 2005. https://datasheet.

octopart.com/CR1616-Panasonic-datasheet-9751741.pdf.

[110] J. Park and J. A. Abraham. A fast, accurate and simple critical path monitor for im-

proving energy-delay product in dvs systems. In IEEE/ACM International Symposium

on Low Power Electronics and Design, pages 391–396, 2011.

[111] S. Park, C. Min, and S. Cho. A 95nw ring oscillator-based temperature sensor for rfid

tags in 0.13um cmos. In 2009 IEEE International Symposium on Circuits and Systems,

pages 1153–1156, 2009. doi: 10.1109/ISCAS.2009.5117965.

[112] Powercast. P2110B 915 MHz RF Powerharvester Receiver, December

2016. https://www.powercastco.com/wp-content/uploads/2016/12/

P2110B-Datasheet-Rev-3.pdf.

[113] Powercast. TX91501B – 915 MHz Powercaster Transmitter, October

2019. https://www.powercastco.com/wp-content/uploads/2019/10/

User-Manual-TX-915-01B-Rev-A-1.pdf.

[114] Powercast. 915 mhz dipole antenna datasheet, November

2020. https://www.powercastco.com/wp-content/uploads/2020/11/

DA-915-01-Antenna-Datasheet_new_web.pdf.

[115] P. Prabha, S. J. Kim, K. Reddy, S. Rao, N. Griesert, A. Rao, G. Winter, and P. K.

https://datasheet.octopart.com/CR1616-Panasonic-datasheet-9751741.pdf
https://datasheet.octopart.com/CR1616-Panasonic-datasheet-9751741.pdf
https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
https://www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-915-01B-Rev-A-1.pdf
https://www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-915-01B-Rev-A-1.pdf
https://www.powercastco.com/wp-content/uploads/2020/11/DA-915-01-Antenna-Datasheet_new_web.pdf
https://www.powercastco.com/wp-content/uploads/2020/11/DA-915-01-Antenna-Datasheet_new_web.pdf


136 BIBLIOGRAPHY

Hanumolu. A highly digital vco-based adc architecture for current sensing applications.

IEEE Journal of Solid-State Circuits, 50(8):1785–1795, 2015.

[116] Huifang Qin, Yu Cao, Dejan Markovic, Andrei Vladimirescu, and Jan Rabaey. Sram

leakage suppression by minimizing standby supply voltage. In International Symposium

on Quality Electronic Design, ISQED, pages 55–60, 2004.

[117] Qingrui Liu and Changhee Jung. Lightweight Hardware Support for Transparent

Consistency-Aware Checkpointing in Intermittent Energy-Harvesting systems. In Non-

Volatile Memory Systems and Applications Symposium, NVMSA, August 2016.

[118] Amir Rahmati, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber, Wayne Burleson,

and Kevin Fu. TARDIS: Time and Remanence Decay in SRAM to Implement Secure

Protocols on Embedded Devices without Clocks. In USENIX Security Symposium,

2012.

[119] Y. K. Ramadass and A. P. Chandrakasan. An efficient piezoelectric energy harvesting

interface circuit using a bias-flip rectifier and shared inductor. IEEE Journal of Solid-

State Circuits, 45(1):189–204, 2010.

[120] Benjamin Ransford and Brandon Lucia. Nonvolatile Memory is a Broken Time Ma-

chine. In Workshop on Memory Systems Performance and Correctness, 2014.

[121] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System Support for

Long-Running Computation on RFID-Scale Devices. In Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), 2011.

[122] Andres Georg Rosch, Andre Gall, Silas Aslan, Matthias Hecht, Leonard Franke,

Md. Mofasser Malick, Lara Penth, Daniel Bahro, Daniel Friderich, and Uli Lemmer.



BIBLIOGRAPHY 137

Fully printed origami thermoelectric generators for energy-harvesting. Flexible Elec-

tronics, 2021.

[123] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. Design

of an rfid-based battery-free programmable sensing platform. IEEE Transactions on

Instrumentation and Measurement, 57(11):2608–2615, Nov 2008.

[124] A. Sanyal, S. Li, and N. Sun. Low-power scaling-friendly ring oscillator based σδ adc.

In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5,

2018.

[125] Fred Schlachter. No moore’s law for batteries, April 2013. https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC3619319/.

[126] ROHM Semiconductor. Low Voltage Standard CMOS Voltage Detector ICs, Octo-

ber 2021. https://fscdn.rohm.com/en/products/databook/datasheet/ic/power/

voltage_detector/bu48xxg-e.pdf.

[127] Henry Sodano, Gyuhae Park, and Daniel Inman. Estimation of Electric Charge Output

for Piezoelectric Energy Harvesting. In Strain, Volume 40, 2004.

[128] ST. Small signal schottky diode, October 2001. https://www.st.com/content/ccc/

resource/technical/document/datasheet/group1/11/76/e4/a3/df/07/49/14/

CD00000767/files/CD00000767.pdf/jcr:content/translations/en.CD00000767.

pdf.

[129] Pico Technology. Picoscope 2000 series, 2016. https://www.picotech.com/

download/datasheets/picoscope-2000-series-data-sheet-en.pdf.

[130] TestEquity. Model 123H Temperature/Humidity Chamber With F4 Controller and

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619319/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619319/
https://fscdn.rohm.com/en/products/databook/datasheet/ic/power/voltage_detector/bu48xxg-e.pdf
https://fscdn.rohm.com/en/products/databook/datasheet/ic/power/voltage_detector/bu48xxg-e.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group1/11/76/e4/a3/df/07/49/14/CD00000767/files/CD00000767.pdf/jcr:content/translations/en.CD00000767.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group1/11/76/e4/a3/df/07/49/14/CD00000767/files/CD00000767.pdf/jcr:content/translations/en.CD00000767.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group1/11/76/e4/a3/df/07/49/14/CD00000767/files/CD00000767.pdf/jcr:content/translations/en.CD00000767.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group1/11/76/e4/a3/df/07/49/14/CD00000767/files/CD00000767.pdf/jcr:content/translations/en.CD00000767.pdf
https://www.picotech.com/download/datasheets/picoscope-2000-series-data-sheet-en.pdf
https://www.picotech.com/download/datasheets/picoscope-2000-series-data-sheet-en.pdf


138 BIBLIOGRAPHY

EZ-Zone Limit Operation and Service Manual, 2010. https://www.testequity.com/

UserFiles/documents/pdfs/123Hman.pdf.

[131] Priya Thanigai. Frams as alternatives to flash memory in embedded designs, July

2011. https://www.embedded.com/design/mcus-processors-and-socs/4390688/

2/FRAMs-as-alternatives-to-flash-memory-in-embedded-designs.

[132] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and V. De. Tunable

replica circuits and adaptive voltage-frequency techniques for dynamic voltage, tem-

perature, and aging variation tolerance. In 2009 Symposium on VLSI Circuits, pages

112–113, 2009.

[133] Voltaic. Voltaic systems p121 r1g, April 2020. https://voltaicsystems.com/

content/VoltaicSystemsP121R1G.pdf.

[134] Harrison Williams, Xun Jian, and Matthew Hicks. Forget failure: Exploiting sram data

remanence for low-overhead intermittent computation. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’20, page 69–84, New York, NY, USA, 2020. Associ-

ation for Computing Machinery. ISBN 9781450371025. doi: 10.1145/3373376.3378478.

URL https://doi.org/10.1145/3373376.3378478.

[135] Harrison Williams, Michael Moukarzel, and Matthew Hicks. Failure sentinels: Ubiqui-

tous just-in-time intermittent computation via low-cost hardware support for voltage

monitoring. In International Symposium on Computer Architecture, ISCA, pages 665–

678, 2021.

[136] Lynnette Reese Wolfgang Lutsch. Energy optimization tools for ultra-low-

power microcontrollers, 2020. URL https://www.mouser.com/applications/

low-power-ewc-design/.

https://www.testequity.com/UserFiles/documents/pdfs/123Hman.pdf
https://www.testequity.com/UserFiles/documents/pdfs/123Hman.pdf
https://www.embedded.com/design/mcus-processors-and-socs/4390688/2/FRAMs-as-alternatives-to-flash-memory-in-embedded-designs
https://www.embedded.com/design/mcus-processors-and-socs/4390688/2/FRAMs-as-alternatives-to-flash-memory-in-embedded-designs
https://voltaicsystems.com/content/Voltaic Systems P121 R1G.pdf
https://voltaicsystems.com/content/Voltaic Systems P121 R1G.pdf
https://doi.org/10.1145/3373376.3378478
https://www.mouser.com/applications/low-power-ewc-design/
https://www.mouser.com/applications/low-power-ewc-design/


BIBLIOGRAPHY 139

[137] Joel Van Der Woude and Matthew Hicks. Intermittent computation without hardware

support or programmer intervention. In USENIX Symposium on Operating Systems

Design and Implementation, OSDI, pages 17–32, November 2016.

[138] X. Wu, I. Lee, Q. Dong, K. Yang, D. Kim, J. Wang, Y. Peng, Y. Zhang, M. Saliganc,

M. Yasuda, K. Kumeno, F. Ohno, S. Miyoshi, M. Kawaminami, D. Sylvester, and

D. Blaauw. A 0.04mm316nw wireless and batteryless sensor system with integrated

cortex-m0+ processor and optical communication for cellular temperature measure-

ment. In 2018 IEEE Symposium on VLSI Circuits, pages 191–192, 2018.

[139] Yu-Chi Wu, Pei-Fan Chen, Zhi-Huang Hu, Chao-Hsu Chang, Gwo-Chuan Lee, and

Wen-Ching Yu. A Mobile Health Monitoring System Using RFID Ring-Type Pulse

Sensor. In Conference on Dependable, Autonomic, and Secure Computing (DASC),

2009.

[140] Xilinx. 7 series fpgas data sheet: Overview, 2018. URL https://www.xilinx.com/

support/documentation/data_sheets/ds180_7Series_Overview.pdf.

[141] Xilinx. Artix-7 fpgas data sheet: Dc and ac switching characteristics,

2018. URL https://www.xilinx.com/support/documentation/data_sheets/

ds181_Artix_7_Data_Sheet.pdf.

[142] W. Xu, X. Chen, and J. Wu. An overview of theory and techniques for reducing

ring oscillator supply voltage sensitivity in mixed-signal soc. In 2011 International

Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pages

2039–2042, 2011.

[143] Fan Yang, Ashok Samraj Thangarajan, Wouter Joosen, Christophe Huygens, Danny

Hughes, Gowri Sankar Ramachandran, and Bhaskar Krishnamachari. Astar: Sustain-

https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf


140 BIBLIOGRAPHY

able battery free energy harvesting for heterogeneous platforms and dynamic envi-

ronments. In Proceedings of the 2019 International Conference on Embedded Wireless

Systems and Networks, EWSN ’19, page 71–82, USA, 2019. Junction Publishing. ISBN

9780994988638.

[144] Fan Yang, Ashok Samraj Thangarajan, Sam Michiels, Wouter Joosen, and Danny

Hughes. Morphy: Software defined charge storage for the iot. In Proceedings of

the 19th ACM Conference on Embedded Networked Sensor Systems, SenSys ’21, page

248–260, New York, NY, USA, 2021. Association for Computing Machinery. ISBN

9781450390972. doi: 10.1145/3485730.3485947. URL https://doi.org/10.1145/

3485730.3485947.

[145] Masayuki Yano, James Douglass Penn, George Konidaris,

and Anthony T Patera. Interpolation, August 2013.

https://ocw.mit.edu/courses/mechanical-engineering/

2-086-numerical-computation-for-mechanical-engineers-fall-2014/

nutshells-guis/MIT2_086F14_Interpolation.pdf.

[146] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon Lee,

Changwoo Min, and Changhee Jung. Replaycache: Enabling volatile cachesfor energy

harvesting systems. In MICRO-54: 54th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO ’21, page 170–182, New York, NY, USA, 2021. Associa-

tion for Computing Machinery. ISBN 9781450385572. doi: 10.1145/3466752.3480102.

URL https://doi.org/10.1145/3466752.3480102.

[147] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. Moo: A Battery-

less Computational RFID and Sensing Platform. In Technical Report UMCS-2011-020,

2011.

https://doi.org/10.1145/3485730.3485947
https://doi.org/10.1145/3485730.3485947
https://ocw.mit.edu/courses/mechanical-engineering/2-086-numerical-computation-for-mechanical-engineers-fall-2014/nutshells-guis/MIT2_086F14_Interpolation.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-086-numerical-computation-for-mechanical-engineers-fall-2014/nutshells-guis/MIT2_086F14_Interpolation.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-086-numerical-computation-for-mechanical-engineers-fall-2014/nutshells-guis/MIT2_086F14_Interpolation.pdf
https://doi.org/10.1145/3466752.3480102


BIBLIOGRAPHY 141

[148] Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk Choi, and Changhee Jung. Sweep-

cache: Intermittence-aware cache on the cheap. In Proceedings of the 56th An-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO ’23, page

1059–1074, New York, NY, USA, 2023. Association for Computing Machinery. ISBN

9798400703294. doi: 10.1145/3613424.3623781. URL https://doi.org/10.1145/

3613424.3623781.

[149] Kenneth M. Zick and John P. Hayes. Low-cost sensing with ring oscillator arrays

for healthier reconfigurable systems. ACM Trans. Reconfigurable Technol. Syst., 5(1),

March 2012. ISSN 1936-7406. doi: 10.1145/2133352.2133353. URL https://doi.

org/10.1145/2133352.2133353.

https://doi.org/10.1145/3613424.3623781
https://doi.org/10.1145/3613424.3623781
https://doi.org/10.1145/2133352.2133353
https://doi.org/10.1145/2133352.2133353

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	Publications from this Thesis
	List of Figures
	List of Tables
	Introduction
	An Overview of Intermittent Computation
	Circuit- and Device-level Challenges
	Contributions of This Work

	Exploiting SRAM Data Remanence for Intermittent Computation
	Introduction
	Background
	Microcontroller Memory Hierarchy
	NVM Choices

	Motivation
	Intermittent Off Times are Short
	SRAM has Time-dependent Volatility

	TotalRecall Design
	Challenge: Detecting Volatility
	My Solution: Cyclic Redundancy Checks (CRC)
	TotalRecall Overview
	Checkpoint Layout and Creation
	Restoring from Checkpoints

	TotalRecall Implementation
	CRC Implementation
	Additional Challenges

	Evaluation
	Correctness
	TotalRecall's Overhead
	TotalRecall Practical Considerations

	Related Work
	One-time Checkpointing
	Continuous Checkpointing
	Checkpointing Beyond MCUs

	Conclusion

	Hardware Support for Just-in-Time Intermittent Computation
	Introduction
	Background and Related Work
	Supporting Intermittent Computation
	Monitoring Supply Voltage
	Enabling Future Intermittent Systems with Practical Voltage Monitoring

	Failure Sentinels Design
	Ring Oscillators
	Voltage-Frequency Relationship
	System Overview
	Choosing RO Length
	Duty Cycling
	Maximizing Voltage Sensitivity
	Logic Interfacing
	Voltage-Frequency Memoization

	Failure Sentinels Implementation
	SPICE Modeling
	FPGA Implementation

	Evaluation
	Failure Sentinels Design Space
	Failure Sentinels Scales with Technology
	Temperature Variation
	System-level Impact

	Conclusion

	Energy-Adaptive Buffering in Batteryless Systems
	Introduction
	Background and Related Work
	Choosing Buffer Capacity
	Power-Responsive Performance Scaling
	Multiplexed Energy Storage
	Unified Dynamic Buffering

	Design
	REACT Overview
	Cold-start Operation and the Last-level Buffer
	Dynamic Capacitor Banks
	REACT Software Interface

	Implementation
	Baseline Systems
	Computational Backend
	Energy Harvesting Frontend

	Evaluation
	Software and Energy and Overhead
	Characterization
	REACT Minimizes System Latency
	REACT Maximizes Energy Capacity
	REACT Provides Flexible, Efficient Longevity
	REACT Improves End-to-End System Efficiency

	Conclusion

	Conclusion and Future Work
	Future Work
	Extending SRAM-based Batteryless Computing
	Persistent Peripherals for Intermittent Systems
	Systems and Architectures for Emerging Memories


	Bibliography

