
A Difference World: High-performance, NVM-invariant, Software-only
Intermittent Computation

Harrison Williams∗

Virginia Tech
Saim Ahmad∗†

Amazon
Matthew Hicks
Virginia Tech

Abstract

Supporting long life, high performance, intermittent compu-
tation is an essential challenge in allowing energy harvesting
devices to fulfill the vision of smart dust. Intermittent compu-
tation is the extension of long-running computation across the
frequent, unexpected, power cycles that result from replacing
batteries with harvested energy. The most promising intermit-
tent computation support strategies combine programmer di-
rection and compiler analysis to minimize run-time overhead
and provide programmer control—without specialized hard-
ware support. While such strategies succeed in reducing the
size of non-volatile memory writes due to checkpointing, they
must checkpoint continuously. Unfortunately, for Flash-based
devices (by far the most ubiquitous), writing checkpoints is
slow and gradually kills the device. Without intervention,
Flash devices and software-only intermittent computation are
fundamentally incompatible.

To enable ubiquitous programmer-guided intermittent com-
putation we design and implement CAMEL. The key idea
behind CAMEL is the systematic bifurcation of program state
into two “worlds” of differing volatility. Programmers com-
pose intermittent programs by stitching together atomic units
of computation called tasks. The CAMEL compiler ensures
that all within-task data is placed in the volatile world and
all between-task data is placed in the non-volatile world. Be-
tween tasks, CAMEL swaps the worlds, atomically locking-in
the forward progress of the preceding task. In preparation
for the next task, CAMEL resolves differences in world view
by copying only differences due to the preceding task’s up-
dates. This systematic decomposition into a mixed-volatility
memory allows—for the first time—long-life and high per-
formance programmer-guided intermittent computation on
Flash devices: CAMEL outperforms the state-of-the-art check-
pointing system for Flash-based devices by up to 5x while
eliminating the need for hardware support, and enables reli-
able execution of atomic operations where the state-of-the-art

∗Equal contribution.
†Work completed at Virginia Tech.

fails. Beyond Flash, CAMEL’s differential buffer system im-
proves performance by a factor of 2x compared to existing
task-based approaches on FRAM platforms.

1 Introduction

Energy harvesting [34, 43, 54] is the key to realizing the vi-
sion of ubiquitous computing [22, 48]. Aggressive transistor
scaling brings us to an inflection point: computing devices
are smaller than a grain of rice and operate on nano-watts of
power [53], but the batteries required to power them remain
largely unchanged, leaving them large, heavy, expensive, and
sometimes flammable [4]. This asymmetric scaling means
attaining ubiquity demands that current and future devices
shed batteries in favor of harvested energy.

The transition to harvested energy brings a new challenge:
how can we support long-running programs in the face of the
frequent, unpredictable, power cycles brought on by the rela-
tive trickle of energy supplied by energy harvesting? Existing
programs and programmers alike assume a continuous supply
of energy, while energy harvesters provide only enough en-
ergy for short bursts of computation. Attempting to execute
unmodified programs on such short bursts of power dooms
long-running programs to a never-ending series of restarts.
A naive application of existing checkpointing schemes [41]
is inadequate as previous work shows that, without careful
attention to the memory durability ramifications of power
cycles, semantically incorrect executions occur [40]. Thus
intermittent computation is born.

There are two classes of intermittent computation:
Just-in-time checkpointing: special-purpose hardware
monitors available power, committing a checkpoint and ceas-
ing computation when power dips below a pre-defined volt-
age threshold [2, 3, 21, 41, 49]. Recent work shows that even
on-chip1 voltage monitors steal between 24% and 71% of a
system’s energy when using a comparator and an ADC for

1Often on-chip voltage monitoring hardware is subscribed to software
functionality and not available for just-in-time voltage monitoring.

voltage monitoring, respectively [51].
Continuous checkpointing: a program is decomposed
(by a programmer [6, 26, 29], compiler [30, 52], or hard-
ware [11, 27, 28, 45]) into a series of inherently-restartable
sub-computations, glued together by checkpoints. This re-
sults in power-failure-agnostic program execution.

Programmer-guided continuous checkpointing intermittent
computation systems are favored when programmers require
guarantees about execution [6, 26, 29]. Such guarantees are
common when using external devices, which pose challenges
for just-in-time checkpointing systems: peripheral operations
are often atomic (e.g., UART or I2C transmissions) and, when
interrupted by power loss, require that (1) execution is rolled
back to the beginning of the operation and (2) the relevant
peripheral be reconfigured for the section of code to be re-
executed. However, unrestricted state rollback often causes
semantically incorrect execution [40], while forcing the pro-
grammer to anticipate the effects of a power loss at every point
in the code and write reconfiguration routines to mitigate the
consequences is unscalable and error-prone.

Programmer-guided approaches relieve programmers of
this burden through a combination of compiler analysis and a
C programming interface that exposes forward progress atom-
icity as a first-class programming abstraction. Compiler analy-
sis is comprehensive and error-free, while the programming in-
terface allows programmers to reason about the system-level
effects of computation—at a granularity that they are com-
fortable with or that mirrors the device’s interface/protocol.
Such approaches divide programs into a series of checkpoint-
connected tasks representing atomic, restartable units of com-
putation, i.e., they either complete entirely or not at all. Re-
gardless of power cycles, the result of task execution is seman-
tically consistent with the code. The fundamental principle is
that tasks keep their changes private until they complete. Early
work conservatively versions all within-task data [26], while
follow-on work introduces new classes of cross-task com-
munication channels [6]. The most recent approach further
reduces overhead using idempotence analysis to minimize
data copying [29].

This paper addresses two limitations in state-of-the-art
programmer-guided intermittent computation approaches:
Flash device lifetime: the frequent non-volatile memory
writes of continuous checkpointing strategies—no matter
the size—exhaust Flash’s limited write endurance [16].
Performance: current approaches copy redundant data to
within-task buffers due to not reusing existing data.

Fixing the first flaw makes programmer-guided intermit-
tent computation possible and performant on Flash-based
devices. Fixing the second flaw increases performance
across all devices.

We design and implement CAMEL, an extension to C
and compiler support that enables long-life, low-overhead
intermittent computation on Flash-based systems—without
hardware support. Our solution leverages the idea of two

worlds from ARM TrustZone [35], but replaces security
with data non-volatility. Two worlds exist within a CAMEL-
instrumented program: a non-volatile inter-task world (for
recovery) and a volatile intra-task world. We implement this
selective mixed-volatility world abstraction on Flash devices
using the time-dependent non-volatility of SRAM (the main
memory on Flash-based devices) to create a mixed-volatility
domain in SRAM. Unlike previous work which checkpoints
all of SRAM, rendering it effectively wholly-non-volatile [49]
(§5 shows that this is an untenable solution from a perfor-
mance standpoint), CAMEL strategically creates both volatile
and non-volatile regions within SRAM. Placing within-task
data in the volatile world allows partial task execution to be
safely forgotten across power cycles. Placing across-task data
in the non-volatile worlds allows for task-level, atomic, for-
ward progress. The challenge that CAMEL addresses is the
correct and efficient transfer of data between the volatile and
non-volatile worlds when power loss can occur at any time.
CAMEL’s solution of fine-grain idempotence analysis coupled
with differential state analysis allows CAMEL to efficiently
update and transition between worlds.2

We validate CAMEL’s ability to extend long-running com-
putation across frequent power cycles using popular micro-
controllers in energy harvesting deployments and a superset
of benchmarks from previous work. Experiments on hardware
under realistic energy harvesting conditions show that CAMEL
reduces average run-time overhead by 3–5x over the state-of-
the-art Flash-based intermittent system and enables correct
execution of atomic operations where prior work fails. On the
FRAM-based devices earlier programmer-directed intermit-
tent systems target, CAMEL’s advanced compiler analyses cut
run-time overhead in half compared to the state-of-the-art.

This paper makes the following contributions:
1. We demonstrate that existing continuous checkpointing

approaches have poor performance and kill Flash due to
checkpoint-induced Flash memory writes/erases (§2.1).

2. We propose the notion of controlled-volatility worlds to
enable high-performance programmer-guided intermit-
tent computation on Flash devices (§3.4).

3. We present an NVM-invariant performance improve-
ment: reusable differential buffers (§3.5).

4. We expose to the designer and quantify the tradeoff be-
tween pre-deployment effort and run-time overhead (i.e.,
canary vs. CRC) (§3.2).

5. We evaluate CAMEL against state-of-the-art just-in-time
2Note that swapping data from the volatile world to the non-volatile world

is different than double buffering seen in other intermittent computation
systems. In double buffering, all software state is written to non-volatile
memory to lock-in forward progress. The old checkpoint (and its buffer) is
maintained to provide a valid recovery option all the way until the last bit of
the current state is written to the new checkpoint [52]. No buffer is modified
outside of the checkpoint commit process. In contrast, CAMEL’s volatile
world acts as a scratch-pad for all state changes of the current task and the
non-volatile world acts as a valid recovery option. Idempotence analysis
allows CAMEL to avoid double buffering the non-volatile world, reducing
memory overhead and increasing performance.

and programmer-guided intermittent systems; results
show that CAMEL outperforms previous approaches in
lifetime, functionality, and performance—regardless of
NVM (§5).

6. We open-source our design and evaluation artifacts to
enable further research and deployment of CAMEL on
current systems.

2 Motivation

There exists a succession of programmer-guided intermittent
computation systems, each refining the interface exposed to
programmers and reducing run-time overhead. Why is an-
other approach needed? This section answers this question
through analysis that shows that by ignoring Flash-based
energy-harvesting platforms, we exclude the most ubiqui-
tous, most available, lowest cost, and highest performance
systems from the benefits of intermittent computation.
Experiments with existing approaches show that due to the
performance and lifetime consequences of Flash writes/erases
and the high-frequency checkpoints endemic to continuous
checkpointing, a new approach is required. Lastly, we show
that SRAM retains state for many minutes during the off peri-
ods common to energy harvesting devices. This motivates a
new, in-place checkpointing, approach to programmer-guided
intermittent computation: CAMEL.

2.1 Why Intermittent Computation on Flash
Devices?

Frequently checkpointing allows programmer-guided ap-
proaches to remove the requirement of dedicated voltage
monitoring hardware and reliably execute atomic operations,
but exposes any performance limitations associated with
the Non-Volatile Memory (NVM) storing checkpoints. For
several decades, the only mass-market option for NVM in
energy-harvesting-class devices was Flash memory. In the
last five years, a new NVM emerged: Ferroelectric Random-
Access Memory (FRAM). Following this trend, early energy-
harvesting platforms used Flash-based microcontrollers (e.g.,
WISP 4 [43] and Moo [54]), while more recent platforms
use the more esoteric (outside of the lab) FRAM-based mi-
crocontrollers (e.g., WISP 5 [34]). According to the WISP
5 developers, the impetus for the transition to FRAM-based
devices is the lower cost of writes compared to Flash.

While write latency is one metric to compare NVM tech-
nologies, other metrics become important in a world where
NVM writes/erases are no longer the limiting factor. Flash-
based devices provide several advantages over similar FRAM-
based devices: Flash devices are more available and have
a larger pool of developers and suppliers, since they have
been around for decades, compared to less than a decade for
FRAM devices. This trend is unlikely to change soon as Flash-
based devices are more available today. Flash also provides

a performance advantage, as shown by comparing Dhrys-
tone results [49]. Recent work highlights other advantages of
switching to a high-energy, high-efficiency operating point [7],
which does not apply to FRAM, due to the additional wait-
states required at higher frequencies. Finally, Flash devices
tend to contain more SRAM at equivalent NVM sizes [17,18].

Given the advantages of Flash, why do the most recent
energy harvesting platforms [34] and programmer-guided
intermittent computation systems [6, 26, 29] target FRAM?
Despite the availability and performance advantages of Flash,
its slow, high-energy writes/erases are antithetical to the high-
frequency checkpoints of continuous checkpointing systems.
Programming Flash (i.e., writing) is energy and time-intense
as it requires collecting enough charge to raise the voltage
of a Flash cell high enough to force charge to flow across
the cell’s dielectric (e.g., from 2.2V up to 12V). Worse, this
process is uni-directional. Thus, to change any single bit of
Flash requires copying a segment (512 B) to SRAM, erasing
the entire segment, updating the desired bits in SRAM, and
writing the updated segment back to Flash. The common-case
nature of checkpointing in programmer-guided systems, the
cost of writing/erasing Flash memory, and Flash’s untimely
failure (§2.2) eclipse any benefit Flash offers. Without an
alternative to checkpointing to Flash, the vast majority of and
most performant microcontrollers will not support software-
only intermittent computation. This paper provides the most
performant programmer-guided checkpointing approach
invariant of NVM type—without killing Flash.

2.2 Existing Programmer-guided Systems Kill
Flash

Flash cells withstand only a limited number of write/erase cy-
cles before they fail [16]. Each checkpoint requires writing to
Flash. Eventually this fills all available Flash memory, requir-
ing an even more expensive erase procedure (because Flash is
one-way programmable). Every time a Flash cell undergoes
a write/erase cycle its dielectric breaks down. Eventually the
dielectric breaks down enough that the cell fails, either not
being able to be read or erased correctly. For example, the
Flash in the TI microcontrollers that we use is rated to endure
10,000–100,000 write/erase cycles before failure.

This sensitivity to Flash writes/erases is antithetical to the
high rate of checkpoints endemic to continuous checkpoint-
ing systems. Continuous intermittent computation systems
eliminate the need for special-purpose voltage-monitoring
hardware by taking many small checkpoints. For example,
existing systems checkpoint on the order of once-per-1000
instructions [6, 26, 29]—limiting the deployment lifetimes of
energy harvesting systems to a handful of days at best. If it
is not possible to replace batteries in energy harvesting de-
vices, then it is equally unpalatable to replace entire devices
every few days. This paper provides the first long lifetime,
continuous checkpointing approach for Flash devices.

2.3 SRAM’s Time-dependent Non-volatility
Many existing intermittent computation works assume SRAM
loses state completely as soon as the microcontroller can no
longer execute. We observe that, due to capacitance in the
system, the voltage of a system’s power rail gradually reduces
from the microcontroller’s brown-out voltage to 0V. Due to
the difference in the microcontroller’s brown-out voltage (e.g.,
1.6V) and SRAM’s data retention voltage (∼0.4V [14, 39]),
SRAM scavenges the otherwise wasted charge to retain
state. We refer to this as SRAM’s time-dependent non-
volatility: for a period after computation ceases, SRAM acts
as a non-volatile memory. This presents an opportunity to
leverage SRAM as a checkpoint storage location—as long as
SRAM retains data for longer than the off time.

To verify this opportunity, we first quantify how long
SRAM provides perfect data retention for. For this exper-
iment, we use a Flash-based MSP430 development board [20]
that is representative of energy harvesting-class devices. The
literature indicates that two factors dominate the discharge
time of a capacitor: capacitor size and temperature. To ex-
plore the impact of these variables on SRAM’s data retention
time, we modify the development board, replacing its 10µF
decoupling capacitor with 47µF, 100µF, and 330µF versions.
We select the 47µF capacitor as it represents what the most
popular energy harvesting devices use [34, 43]. We use larger
capacitor sizes to show how system designers can tune the
retention time through the capacitor. To control temperature,
we perform the experiments in a Test Equity 123H thermal
chamber, varying temperature between 20°C and 50°C.

Because SRAM fails bi-directionally, in a board- and noise-
dependent pattern [12], for each temperature/capacitor com-
bination, we perform five trials writing all 1s and five of all
0s, checking for data loss at each trial. Figure 1 shows the
retention time of our MSP430 microcontroller across a range
of temperatures and the three energy storage capacitor sizes.
These results show that—even without system designer aware-
ness of SRAM’s time-dependent non-volatility—current en-
ergy harvesting platforms provide relatively long data reten-
tion times.

2.4 Intermittent Off Times are Short
Given that SRAM provides perfect data retention for between
50 seconds and almost 4 hours, the next question to answer
is how long unexpected off-times3 are for the most common
energy sources. To answer this question, we perform a meta-
analysis of the energy harvesting literature to identify com-
mon energy sources and, for each source, a realistic upper
bound for off times. This task is complicated by the fact that

3We differentiate between expected and unexpected off times. The chal-
lenge for intermittent computation is dealing with unexpected power-cycles
and their off times; thus that is our focus. In contrast, solar-powered systems
experience long off times at night, but this is (predictable) power loss akin to
turning off a desktop computer—not intermittent computation.

20 25 30 35 40 45 50 55
Temperature (°C)

0

1000

2000

3000

4000

10
0%

 R
et

en
tio

n
Ti

m
e

(s
)

Solar: 300s
Thermal: 14s RF: 10s Piezoelectric: 2s

Office Death
Valley

47 µF
100 µF
330 µF

Figure 1: The maximum time (secs) before a single bit fails in
SRAM w.r.t. temperature and capacitor size. The horizontal
bars represent the maximum off-times from our meta-analysis
of off-times reported in the literature.

previous work focuses on on-times due to its reliance on the
long-term data retention guarantees of non-volatile memo-
ries. Fortunately, by looking at on-times and the frequency of
power-on events, we are able to deduce approximate off times.
We add the off-times for four energy sources as horizontal
lines in Figure 1: RF [9, 27, 41], Thermal [27], Piezoelec-
tric [27, 44], and Solar [9, 27]. When a given capacitor’s line
is above the horizontal line, the capacitor provides enough
perfect data retention time to support operation at the temper-
ature and below. To summarize our meta-analysis: off-times
for most sources are much shorter than the data retention
time provided by existing energy harvesting platforms. In
this paper, we design and implement a system that reliably
uses SRAM as a low overhead, long lifetime, non-volatile
memory for the short off times common to intermittent
computing, falling back to existing checkpointing to support
longer and expected power-off events.

3 Design

We develop CAMEL, a programmer-guided, continuous check-
pointing system with the goal of enabling long-life, high-
performance intermittent computation on Flash-based devices.
CAMEL avoids continuously writing program state to non-
volatile memory by preserving in-place SRAM data using
differential reusable buffers. Our differential buffer model
allows checkpointing just-enough data required to restart pro-
gram state as opposed to the entire SRAM as implemented
previously [49]. We maintain semantically correct execution
by ensuring the in-place data remains consistent across power
cycles and that tasks always re-execute with known-good data.

Uninstrumented
code Programmer

Decomposition

Task
divided
code Compiler

Pass
Instrumented
Executable

Completion

Restore/
Restart

Failure

Program
Execution RecoveryCRC/Canary

Checkpoint

FLASH SRAM

Write

Read
CRC/Canary
Verification

Commit

Figure 2: Interaction amongst components within CAMEL.

CAMEL is an amalgamation of three components, working
together to guarantee the correct execution of a program on
harvested energy. These components are: (1) CAMEL Recov-
ery Routine; (2) CAMEL Tasks; and (3) CAMEL Compiler.

3.1 System Overview

CAMEL supports C programs (including dynamic memory4

and pointers) where main() consists of task function calls
connected by control-flow logic (i.e., no assignment state-
ments). Tasks may call other functions, but not other tasks.
Figure 2 gives a high level overview of how different com-
ponents interact within CAMEL. The CAMEL programming
model allows the programmer to ensure forward progress of
applications on any energy harvesting platform by decompos-
ing source code into a set of individually re-executable tasks.
The CAMEL compiler analyzes how tasks interact with shared
data in the differential buffers to ensure in-place SRAM data
is consistent at run time, despite re-executions after power fail-
ures. CAMEL performs idempotence analysis and produces
a ready-to-run executable that can be flashed to a board of
the programmer’s choosing. CAMEL implements the volatile
and non-volatile world concept using two differential, swap-
pable buffers—at any given point in execution, a volatile
world and a non-volatile world exist. Tasks interact with
data exclusively in the volatile world, whereas recovery
pulls data exclusively from the non-volatile world. Be-
tween tasks, CAMEL atomically swaps which buffer repre-
sents each world—locking-in forward progress by rendering
the updated buffer effectively non-volatile (§3.2). After the
swap and before the next task, CAMEL resolves the differ-
ences between the up-to-date newly-non-volatile world and
the outdated newly-volatile world by copying only the data
that the preceding task modified. Following a power failure,
CAMEL invokes the recovery routine which continues execu-

4The current implementation of CAMEL supports dynamic mem-
ory within a task. Supporting dynamic memory between tasks requires
dynamically-sized worlds; an engineering challenge that we are address-
ing as future work.

tion either (1) from the most recent checkpoint in the common
case when SRAM retains its data, or (2) from the beginning of
the program, when an uncommonly long power failure causes
SRAM to lose its data.

3.2 Detecting Unexpectedly Long Off Times
SRAM transitions from non-volatility to semi-volatility, grad-
ually approaching full-volatility as supply voltage falls. For
any stage beyond non-volatility, the SRAM cells begin los-
ing state, jeopardizing recovery. We employ two methods to
detect unexpectedly long off times.

Canary Values: The SRAM cells that fail first upon
power loss, and the direction of failure, are decided by
manufacturing-time process variation; each device exhibits
unique yet consistent failure patterns [12, 13]. We leverage
this predictable failure pattern for a low-overhead check of
SRAM data retention by writing a pre-determined value to
canary memory and checking for it after a power failure. If
the first-to-fail cells retain their canary values, we know all
SRAM data is intact and can restart from a checkpoint; oth-
erwise, data may be corrupted and we must restart execution
from the beginning. SRAM canary values require chip char-
acterization to identify (1) the cells that fail first and (2) the
value those cells fail to, which prevents silent failures from
the cell failing into the chosen canary value.

Pre-deployment characterization works for three reasons:
(1) given a device, SRAM cells lose state in a mostly totally
ordered fashion—especially the tail cells [13]; (2) SRAM cell
failure ordering is preserved across temperature and voltage
fluctuations [10]; and (3) The first-to-fail cells have a reliable
power-on state [50]. To determine for a given device the loca-
tion and values of the canary cells, the user searches through
off-times to find the first cells to fail at the shortest off-time.
The cells are set to all 1’s, then the power is disconnected, then
reconnected after the desired off time, then the SRAM state is
read-back, looking for failed cells. The user does the same for
all 0’s. If a cell fails for either case, then it is marked as a fail-
ure for that time. Our experiments perform 3 such (Bernoulli)
trials at each time step to eliminate noise. We then store the
addresses of the first-to-fail cells in non-volatile memory and
the value that exposes their failure. The checkpoint routine
writes the value to the addresses, while the recovery routine
validates it before resuming execution. Programmers can use
multiple canary cells for increased resilience at the cost of a
few more memory comparisons.

Cyclic Redundancy Checks (CRC): For cases where chip
characterization represents unacceptable pre-deployment ef-
fort, we explore a second approach based on Cyclic Redun-
dancy Checks. CRCs are common mechanisms for commu-
nication systems and applications that need to verify the in-
tegrity of received data with high confidence. Hardware sup-

port for CRCs is common to low-powered micro-controllers
that send and receive data.

The CRC algorithm divides data by a predetermined gen-
erator polynomial using repeated shifts and XOR operations.
The output of the CRC algorithm is the remainder of this di-
vision, which is stored alongside the data in volatile memory.
The state of the application data in the SRAM changes after
every task, hence we recompute the CRC between tasks. To
verify data integrity after recovery, we recalculate the CRC
over the trusted in-place application data and compare the
result to the one previously stored in memory. The two re-
mainders must match to conclude that data remains integral.

CRCs guarantee up to G bits of error detection, where G is
determined by the variant of CRC used; a 16-bit CRC detects
up to 3 flipped bits whereas a 32-bit CRC detects up to 5
flipped bits. Both CRC variants additionally detect all odd-
bit errors. For other errors, CRCs provide probabilistic error
detection with a chance of missing an error of 1/2m, where
m is the width of the CRC [23]. For a multi-bit error to go
undetected, the checksum of the corrupted and un-corrupted
must be the same. The probability of undetected data corrup-
tion is further reduced because there is a 50% chance that a
failing cell will fail into the correct value; thus, CRCs provide
a high-confidence solution to verify SRAM’s data integrity.

3.3 Bimodal Recovery Routine

As shown in Figure 2, following a power failure during pro-
gram execution, the recovery routine passes control to the
program from either the start of either the main function
or the last executed task. We arrive at this decision by re-
computing the CRC or checking the canary value, depending
on the variant of CAMEL deployed.

To resume execution from the last in-place checkpoint
(1) the recomputed CRC should match the one stored in the
SRAM or (2) the canary value must be correct, indicating
that the data in the non-volatile world was preserved over
the power cycle. After passing the integrity check, CAMEL
copies the data in the non-volatile world over the volatile
world, ensuring that the first task begins with correct data.
CAMEL restores control to the program at the beginning of
the last partially-completed task by copying the saved register
values back to the register file, restoring the program counter
last. In the uncommon case—when SRAM fails to retain data
due to an unexpectedly long power failure—CAMEL passes
control to the beginning of the program and restarts execution.

3.4 CAMEL Tasks

The CAMEL programming model is task-based and depends
on the programmer to divide source code into independent
atomic tasks. This division enables tracking within-task idem-
potence [52] by the compiler. We label a section of code as

main(){
 int x = 0;
 int y = 2;
 int z = 5;
 while(1){
 x = getReading();
 int offset = y + z;
 x = x + offset;
 }
}

Source Code
struct {
 int x;
 int y;
 int z;
} global;
task_sample() {
 int i = getReading();
 GV(x) = i;
}
task_transform() {
 int offset = GV(y) + GV(z);
 GV(x) = GV(x) + offset;
}
main() {
 while (1) {
 task_sample();
 task_transform();
 }
}

Instrumented Code

Execution
main() {
 task_sample()
 int i = getReading()
 GV(x) = i
 task_transform()
 int offset = GV(y) + GV(z)

task_transform()
 int offset = GV(y) + GV(z);
 GV(x) = GV(x) + offset;

(c)

(b)

(a)

Figure 3: (a) Shows unmodified source code (b) shows the
task divided code according to the conventions described §3.4
(c) shows the execution of the code in (b) after it has been
instrumented by the compiler.

idempotent if no variable undergoes a Write-after-Read de-
pendency [24] within that section. A variable is subject to the
Write-after-Read dependency when it is first read and then
later written in the same task. The CAMEL compiler identifies
this sequence by a load followed by a store to the same mem-
ory location. Variables within a task are tracked to ensure the
consistency of the differential buffers upon task (re)entry post
power failure.

Programmers define functions serving as volatile tasks
using the task_ keyword to mark them for tracking by the
compiler. CAMEL expects all variables that are to be used
by multiple tasks or reused by multiple executions of the
same task to be declared as task-shared variables. All task-
shared variables are declared as part of a global structure
which serves as the buffer for the volatile and non-volatile
worlds. Task-shared variables need not be passed to every
task individually; instead, they are directly accessible by the
use of the GV() keyword.

After dividing the application into different worlds using
tasks, the flow of the program must be described in main—
each task must be called in an order that would result in an

prev

prev

curr

curr

16

16

16

16

Restart (2)

Start (1)

undo-logging (3)

Non-Volatile
(1)(2)(3)

(1) (2) (3)
Volatile

GV(curr) = GV(prev) + 4;
...
GV(prev) = GV(curr);

16

20

16

16

Figure 4: (1) Shows the start of a task (2) Shows a power fail-
ure midway execution of a task (3) shows undo-logging before
any tasks begins execution. The state of the non-volatile and
volatile buffers is shown after each of the three steps.

identical execution to that of the unmodified version of the
program. We limit the use of main() to calling tasks and read-
only conditionals that determine the next task, as CAMEL does
not track idempotency outside of tasks.

3.5 CAMEL Compiler
Our static analysis ensures (1) idempotency of tasks across
power cycles and (2) consistency of the differential shared
buffers across tasks. Any premature writes to the non-volatile
buffer by a task persist across power failures, causing the re-
execution of the task after recovery to yield different results
than expected of it. The compiler statically tracks data in
the volatile world and inserts code between tasks to ensure
data idempotence upon (re-)entry into a task. This ensures
the system-level atomicity of tasks—the results of a task are
never committed to the non-volatile world until the task is
complete. To achieve idempotency and atomicity of a task,
we implement a differential double buffer solution, using the
difference between the two buffers to ensure forward progress
and re-execute tasks after a power failure.

Two versions of the buffer exist at any time, deemed volatile
and non-volatile. Tasks work on global variables in the
volatile buffer and do not address the non-volatile buffer,
which serves as the fail-safe against memory corruption due
to power loss. Between tasks, CAMEL calculates the CRC of
registers and the non-volatile buffer and ensures memory con-
sistency through undo-logging, whereby CAMEL copies the
validated non-volatile buffer over the volatile buffer to undo
partial work. Upon task entry, all global variables are in a
consistent known state. We illustrate this process in Figure 4.

The successful execution of a task is marked by a commit,
which involves swapping the volatile buffer (which contains

1. struct {
2. int x;
3. int y;
4. int z;
5. int temp;
6. int result;
7. };
9. void task_compute() {
10. GV(temp) = GV(x) + GV(y);
11. GV(result) = GV(result) + GV(temp);
12.}

Figure 5: CAMEL programming interface. result undergoes
a write-after-read sequence in line 11.

updated state after task completion) and non-volatile buffer
and re-calculating the CRC on the newly non-volatile buffer.
Crucially, we implement the swap as a pointer re-assignment,
which reduces data movement: instead of copying data from a
dedicated non-volatile buffer, modifying it in a private volatile
buffer, and re-committing it to the non-volatile store, tasks
work directly on the data in the volatile world, which is later
rendered non-volatile by CAMEL as part of the commit pro-
cess. We discuss enforcing the atomicity of the commit in §4.3
to prevent incorrect execution stemming from an interrupted
commit. To ensure correct forward progress, the CAMEL com-
piler resolves differences between the two worlds to keep
program state consistent between tasks.

The compiler makes tasks idempotent by only undo-
logging variables that undergo the write-after-read depen-
dency in a task. These variables cause memory inconsis-
tencies and incorrect execution if a power failure and re-
execution occur after the write and before the commit, as
the preceding read will read a different value from the last
execution. We refer to these variables as non-idempotent; non-
idempotent variables must be undo-logged following a power
failure to ensure idempotence. Between tasks, we atomically
swap the worlds and ensure consistency using a partial update
of the newly-non-volatile world. Each changed variable must
be updated in the volatile buffer to ensure the two buffers
remain consistent between tasks; we use different functions
to update each variable type.

CAMEL implements data copying between buffers us-
ing several internal functions to cover the three types of
variables supported by C: scalars, compounds, and unions.
The copy_scalar function copies scalar values between
buffers; for contiguous variables (i.e., compounds and unions),
CAMEL uses one of the following functions as appropriate:

• copy_array: Logs an entire contiguous variable using
memcpy.

• copy_array_scalar: Logs an element of a contiguous
variable based on a scalar index stored in the differential
buffers.

Source
Code

LLVM
IR

Instrumented
IR

Executable

Set Formation
Global Buffer

Reads Writes

read
first idem

write
firstStatic

Analysis

Clang

Compiler
Modification

msp430-
gcc

Figure 6: Pipeline for the generation of a CAMEL executable.

• copy_array_scalar_local: Logs an element of a con-
tiguous variable based on a task-local scalar index. This
function saves the value of the local variable when it is
used to index into the shared array and uses it to perform
only the required copies during logging.

4 Implementation

4.1 Compiler Analysis

We implement CAMEL as a compiler pass in LLVM
10.0.0 [25], which ultimately produces MSP430 assembly;
we use msp430-gcc to generate the corresponding executable.
The compiler’s aim is to populate sets of read and written
variables to find non-idempotent memory accesses. Figure 6
illustrates the pipeline of our analysis from source code to
an executable. Our pass statically analyzes the structured,
architecture independent LLVM IR generated using the task-
divided code, written by the programmer using the conven-
tions highlighted in §3.4. LLVM provides interfaces to tra-
verse, interact and change the IR. Our pass analyzes every
function declared with the prefix task_. We focus our analysis
on instructions in IR that are directly involved in interacting
with memory locations, namely load, store and memcpy. Fur-
thermore, we are only interested in said instructions if their
operands are a part of the volatile world global buffer as only
that buffer is impacted by task execution.

Our pass begins by performing intra-module static anal-
ysis on the LLVM IR, examining all function declarations
to determine whether they are tasks. Once a task is identi-
fied, our pass traverses the control-flow graph of the function,
searching for loads, stores and memcpys. After identifying
the instructions of interest in the control-flow graph, we back-
track from the operands of the instructions to their first use
in a task. At this stage, we only add variables backed by the
global buffers to their respective read/write set. In addition
to a set of read and written variables, we maintain a set of
read-first variables—variables that are read before they are
written in a task. Once all sets are populated, we take the
intersection of the read-first and write sets. This produces
a set with the variables subject to a write-after-read depen-
dency, which Figure 5 demonstrates. Note that our analysis is

context-insensitive: when the compiler cannot predict which
branch of a conditional statement will execute and one of
the path would mark the variable as read-first, the compiler
considers the variable read-first regardless of the execution
path. This static analysis guarantees the detection of all idem-
potent violations within a task by pessimistically analyzing
all execution paths.

4.2 Compiler Modifications
The compiler inspects main() to locate task call sites and in-
serts code to (1) undo-log data before a task and (2) copy data
between the volatile and non-volatile worlds to ensure buffer
consistency after completing a task. Undo-logging copies vari-
ables in the write-after-read-vulnerable set from non-volatile
to volatile using the functions implemented in §3.5, while
the inter-task buffer swap/update following successful task
completion copies all modified variables.

For arrays, the user may choose to update a specific index
of the array using a variable defined in the volatile world
buffer or a local, task-defined variable. The compiler can
insert logging code for any of these two variants. If the index
is part of the volatile world buffer, the compiler loads the
value of the variable from the buffer, uses the built-in LLVM
getelementptr instruction to get the array from the buffer
and logs the variable. If however, the index is a local variable
(i.e., not part of the buffer), we insert code in tasks to store
the value of the index in the volatile world buffer at the time
of change. We then use this global variable to log the specific
index of the array.

4.3 Recovery
The recovery component has two major elements: the commit
and the recovery functions. Algorithm 1 describes our commit
procedure. Volatile and non-volatile worlds are implemented
as pointers to global buffers, which allows us to swap the
values of each pointer to swap worlds. To ensure the atomicity
of commits, the decision of which pointer points to which
buffer is determined by a flag value that is inverted at the end
of each commit. The commit procedure saves all registers
to a protected region in the non-volatile buffer then updates
the canary value or re-calculates the CRC. We implement
the function to save registers and calculate the CRC in native
MSP430 assembly; the argument to the SAVE_REGISTERS
function is the memory location to place the registers in. The
CRC, when used, is calculated over the saved register file and
non-volatile world buffer and excludes the CRC result itself.

We modify the MSP430 reset vector to point to the recovery
function when the device regains power. The recovery func-
tion passes control to the program by either restarting from
the beginning of the program or from the last in-place check-
point in the SRAM, based on whether the SRAM integrity
check passes. The recovery routine first reads the flag value,

Algorithm 1 Task Commit Routine.
1: NON_VOLATILE← FLAG ? &BUF1 : &BUF2
2: VOLATILE← FLAG ? &BUF2 : &BUF1
3: SAVE_REGISTERS(NON_VOLATILE->reg_file)
4: Guard_BUFFER_REGS_integrity(CRC_MODE)
5: FLAG← not FLAG

which determines which global buffer represents which world.
Then, depending on the integrity check strategy, the routine
either recomputes the CRC over the non-volatile world buffer
or validates the canary value’s integrity. If the non-volatile
world’s contents are valid, recovery commences: 1) the non-
volatile world is copied to the volatile world; 2) the platform
is re-initialized; 3) register values are restored from the non-
volatile world buffer; and 4) the program counter is restored,
resuming execution from the last in-place checkpoint.

4.4 Correctness

Correctness is a first-class part of our design and implemen-
tation processes. Our correctness measures validate that our
CAMEL implementation (1) generates programs capable of
maintaining semantically correct execution on harvested en-
ergy and (2) that the CRC and Canary strategies both de-
tect unexpectedly long off times that corrupt SRAM. To ob-
tain a ground truth to compare compiler-instrumented output
against, we manually instrument all benchmarks and man-
ually compare the generated assembly against the CAMEL-
instrumented assembly. Our comparison shows that there are
no differences between the two, meaning CAMEL is capable
of inserting fault-free code to log data used across different
benchmarks. Our second line of defense is a set of regression
tests that capture corner cases, the data types available in C,
and bugs in earlier versions of CAMEL. Third, we conduct 10
trials of execution for every benchmark to ensure correctness.
In each trial, we execute the uninstrumented and instrumented
benchmarks, comparing the final state of the system after
completion. While executing the instrumented programs, we
introduce approximately 20 random power failures, reflective
of real-wold energy harvesting traces [9]. Finally, we simu-
late the uncommon case of extended off times to validate the
effectiveness of the CRC and the canary.

5 Evaluation

We evaluate CAMEL’s effect on end-to-end system perfor-
mance on a physical MSP430G2955 [15], a Flash-based
energy-harvesting-class microcontroller comparable to those
found in past work [29, 49], running on harvested energy
emulating a typical RF-powered batteryless device (§ 5.1).
For comparison to state-of-the-art Flash-based intermittent
computing, we implement TotalRecall [49] on the same de-

vice.5 We evaluate the canary-based implementations for both
CAMEL and TotalRecall in order to focus on the highest-
performance, hardware-invariant (i.e., no need for hardware
CRC) systems available. Finally, we simulate CAMEL for the
FRAM-based MSP430FR6989 [19] to evaluate its runtime,
binary size, and checkpointing behavior against comparable
task-based intermittent systems: DINO [26], Chain [6], and
Alpaca [29]. For Flash-based devices, our evaluation demon-
strates that CAMEL (1) provides performant, long-life inter-
mittent computation where it was previously limited by volt-
age monitoring hardware, and (2) enables reliable atomic
operations where the state-of-the-art fails due to erroneous
checkpoint placement. On FRAM devices, CAMEL outper-
forms state-of-the-art task-based systems using a novel buffer
design which minimizes data movement.

We first evaluate CAMEL’s performance on five software
benchmarks developed in past work [6, 26, 29], representing
applications commonly found in energy harvesting systems:

Activity Recognition (AR): uses simulated samples
from a three-axis accelerometer to train a nearest neigh-
bor classifier and determine whether a device is moving.
Bit Count (BC): uses seven different algorithms to count
the set bits in a given sequence.
Cold-Chain Equipment Monitoring (CEM): simulates
input data from a temperature sensor and later com-
presses the data using LZW compression [46].
Cuckoo Filter (CF): A Cuckoo filter is a data struc-
ture used to efficiently test for set membership [8]. This
benchmark stores random data in a Cuckoo filter and
later queries the filter to recover the data.
Data Encryption (RSA): RSA is a widely used public-
key cryptosystem [42]. This benchmark encrypts a string
using a user-defined encryption key stored in memory.

We also evaluate CAMEL on three peripheral-focused
benchmarks to explore how the existing options for inter-
mittent computation on Flash-based systems interact with
such systems:6

Transmit: Transmit data over the on-chip UART to a
desktop computer.
Actuate: Generate a sine wave using an external Digital-
to-Analog Converter [32] (DAC) connected via I2C.
Sense: Use the on-chip ADC and a timer to sample the
output of an external light sensor [47] twice per second.

5.1 Experimental Setup
Our experimental setup draws motivation from previous
work [9] on emulating environmental conditions for real-
world energy harvesting use cases in experimental and in-

5The MSP430G2955 on-chip ADC is software-configurable to monitor
supply voltage, enabling direct comparison without hardware modifications.

6We evaluate the peripheral-focused benchmarks primarily for correctness
rather than performance, as each benchmark is a "minimal working example"
for the corresponding peripheral. As a result, end-to-end performance is
dominated by peripheral power consumption (rather than software behavior).

lab setups. We use a secondary MSP430 controlling a high-
drive Digital-to-Analog Converter (DAC) to deliver a pro-
grammable power trace to the device under test; the secondary
microcontroller monitors output voltage and supply current
across a sense resistor and varies the DAC voltage to de-
liver the programmed input power. We evaluate each system
running on the MSP430G2955 under three input power sce-
narios previously recorded using a 915 MHz RF transmit-
ter/harvester pair [36–38] in an active office environment:

• Mobile: The transmitter is mounted in a room, while
the harvester is carried in, around, and through the room.
Average power input: 0.5 mW.

• Cart: The transmitter is on a table, while the harvester
is on a cart moving towards, around, and away from it.
Average power input: 2.12 mW.

• Obstruction: The transmitter and harvester are on a table
approximately 1 meter apart, while various obstructions
(laptops, metal water bottles, etc.) periodically move be-
tween the two. Average power input: 0.227 mW.

These power scenarios provide a range of realistic power
levels for an RF energy harvesting system. The power-control
system charges a 2 mF supply capacitor connected to an
intermediate power gate that connects the MSP430G2955
under test to the supply once capacitor voltage reaches 3.3V
and disconnects it once it reaches 1.8V. We instrument each
benchmark to drive a digital output pin high upon completion,
and monitor this output to record total runtime. To minimize
randomness, we perform 10 trials of each benchmark at 20◦C.

5.2 Programmer Effort
CAMEL requires the programmer to reason about the energy
consumption and data flow of their code and divide it into
tasks accordingly. This has the potential to introduce a signif-
icant design-time burden if the programmer needs to refactor
existing code; the specific level of effort depends on the origi-
nal code base. Porting code from prior intermittent task-based
models (e.g., Alpaca) introduces minimal burden: the only
addition our current CAMEL implementation requires is the
use of the GV keyword to access task-shared variables (which
we plan to automate in the future). Porting plain C code re-
quires more effort as programmers must decompose code
into atomic, self-contained tasks. Fortunately, task-based pro-
gramming is already a common motif in embedded system
design as many applications consist of series of tasks with
natural boundaries (e.g., sensing, computing on, and trans-
mitting data) [1]. Thus, we expect that programmers porting
existing code bases would often only need to convert code
to the CAMEL syntax rather than significantly restructure the
program.

Shifting responsibility to the programmer also has potential
performance consequences. While the range of appropriate

Mobile Cart Obstruction
0

3

6

9

12

15

18

21

24

Po
we

r C
yc

le
s t

o
Co

m
pl

et
io

n

23

7 7.7

4
2

4

1 1 11 1 12 2

6

AR
BC
CEM
CF
RSA

Figure 7: Relative power cycles to completion for benchmarks
using TotalRecall compared to CAMEL.

task sizes depends mainly on the size of the storage capacitor
(and thus is known at design time), the programmer is still
ultimately responsible for keeping task size within this range.
Undersized tasks reduce performance as Camel takes check-
points at each task boundary, increasing the number of unused
checkpoints if software hits many task boundaries during a
single on-period. Oversized tasks threaten non-termination
as Camel must complete at least one task per on-period to
make forward progress. While we do not include them here,
existing techniques to optimistically skip checkpoints [30] or
automatically scale task size [31] are interesting avenues for
expanding on CAMEL.

5.3 Runtime: Flash Platforms

For an energy-constrained batteryless system where the power
draw of active execution eclipses harvester input power, exe-
cution time is dominated by charging periods during which
the system is inactive. Energy efficiency determines the num-
ber of charge-discharge cycles to complete a workload, which
dictates overall performance for typical batteryless devices.
Figure 7 shows the number of power cycles for TotalRecall
to complete each benchmark under various power scenarios
running on the Flash-based MSP430G2955, normalized to
the power cycle count for CAMEL under the same conditions.
Although CAMEL incurs higher software overhead than To-
talRecall by creating and maintaining inter-task checkpoints,
the energy savings from eschewing voltage monitoring with
the ADC enable the CAMEL-based system to complete each
benchmark in fewer power cycles under all circumstances.
ADC power consumption means that TotalRecall has less
energy available for software execution in each power cycle,
forcing the system to power down and wait for more energy—

up to 23 times more than when using CAMEL, as in the AR
benchmark on both the Mobile and Obstruction power traces.

Less time spent waiting for incoming power means that
CAMEL ultimately completes energy-constrained benchmarks
well before TotalRecall: CAMEL reduces the overall time to
completion for the AR, BC, and RSA benchmarks by an aver-
age of 82.1%, 78.2%, and 66.9% across all power scenarios, re-
spectively. CAMEL marginally underperforms TotalRecall on
the CEM and CF benchmarks because these benchmarks both
complete within a single power cycle under all conditions—
i.e., they are not energy-constrained, and the higher energy
cost of TotalRecall is not reflected in their execution time. For
typical batteryless applications running across multiple power
cycles, however, CAMEL outperforms the existing solution
for Flash-based systems by a factor of 3-5x.

5.4 Peripheral Operations
While efficient software execution is essential to performant
intermittent systems, many batteryless system deployments
must interact with the physical world using on-chip or on-
board peripheral devices. To compare CAMEL with the state-
of-the-art for these systems, we first run the three peripheral-
focused benchmarks described in § 5 on TotalRecall under
both continuous and intermittent power. While each bench-
mark completes normally under continuous power conditions,
all fail when subjected to intermittent power: TotalRecall fails
to correctly re-execute atomic operations (UART and I2C
transmissions, respectively) for the Transmit and Actuate
benchmarks after checkpointing, and infinitely hangs during
the Sense benchmark after failing to reconfigure the sample
timer. Applications like Sense present an additional problem
because they compete with TotalRecall for use of the ADC,
preventing checkpointing during measurement and introduc-
ing the potential for semantically incorrect code re-execution.

We demonstrate how CAMEL enables peripheral-focused
intermittent operation on Flash platforms by porting each
benchmark to the CAMEL task model, which ensures that
peripheral devices are always correctly reconfigured after a
power loss and atomic interactions are correctly re-executed.
Porting existing code to the task-based model requires some
one-time programmer effort (e.g., combining sensor config-
uration and sampling into a single atomic task), but ensures
atomic operations complete successfully regardless of power
conditions. Under both continuous and intermittent power, our
CAMEL-based implementations of each peripheral-focused
benchmark complete successfully—enabling peripheral oper-
ations on Flash-based batteryless systems using an intuitive
and scalable programming model.

5.5 Runtime: FRAM Platforms
CAMEL’s software-only approach to intermittent computing
using SRAM data retention yields significant improvements

AR
(164)

BC
(22)

CEM
(902)

CF
(276)

RSA
(202)

Avg.
0

5

10

15

20

Ru
nt

im
e

Ov
er

he
ad

(X
 U

ni
ns

tru
m

en
te

d
Ba

se
lin

e)

Alpaca
Chain

DINO
Camel

Figure 8: CAMEL run-time overhead for FRAM-based de-
vices. The global buffer size in bytes for each benchmark is
shown in parenthesis.

AR BC CEM CF RSA avg.
DINO [26] 1136 717 259 324 1830 788
Chain [6] 2008 717 231 452 315 744
Alpaca [29] 2008 717 225 452 315 743
CAMEL 1999 709 114 385 254 692

Table 1: Number of checkpoints recorded by each task-based
system across all benchmarks.

over state-of-the-art just-in-time techniques, but how does it
compare to previous task-based programming models? We
contextualize CAMEL’s improvements by comparing it to
DINO [26], Chain [6], and Alpaca [29], three task-based sys-
tems designed for FRAM platforms. Running each system on
an FRAM device allows us to isolate the effects of CAMEL’s
differential buffer design without the overhead of an SRAM
integrity check. We compile all task-based software bench-
marks for the FRAM-based MSP430FR6989 [19] and run
them in a modified version of the mspdebug MSP430 simula-
tor [5], which provides fine-grain performance statistics such
as CPU cycle count and number of checkpoints recorded.

Figure 8 and Table 1 illustrate the normalized runtime over-
head and number of checkpoints taken by each task-based
system, respectively. CAMEL’s design marginally reduces the
total number of checkpoints taken—approximately a 7% aver-
age reduction compared to Alpaca, the next-best system—but
reducing data movement overhead using CAMEL’s differen-
tial buffer system means that CAMEL ultimately outperforms
Alpaca by an average factor of 2x, demonstrating the power
of CAMEL’s approach even on FRAM-based devices.

AR BC CEM CF RSA Avg.
0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Bi

na
ry

 S
ize

Alpaca
Chain
DINO

TotalRecall
CamelCRC
CamelCanary

Inter-task Commits: The commit routine following each
task is a primary source of runtime overhead for CAMEL and
varies with CAMEL implementation. CAMELCanary’s commit
has a constant runtime overhead across all benchmarks (∼120
cycles), as the canary values ensuring SRAM integrity are set
at power-on and do not need to be updated between tasks. The
CAMELCanary commit routine only needs to swap differential
buffers and save architectural registers. Because CAMELCRC
needs to compute an integrity check over the safe CAMEL
buffer between each task, commit overhead is higher and a
function of buffer size: across all benchmarks, the average
cycle count for a CAMELCRC commit is ∼7600 cycles. Most
of these cycles are spent calculating the CRC, which our im-
plementation does in software; using hardware CRC support
common to energy-harvesting-class devices would reduce
CAMELCRC commit runtime to close to that of CAMELCanary.

5.6 Binary Size

Figure 5.5 illustrates the increase in binary size of CAMEL and
comparison systems, normalized to the binary size of the unin-
strumented benchmarks. CAMELcanary produces smaller bina-
ries compared to CAMELcrc, because the sizes of the recovery
routine and inter-task commits are significantly reduced when
removing the CRC code. CAMELcanary reduces binary size
when compared to all prior work, while CAMELcrc’s binary
overhead impact is comparable (1% larger than Alpaca [29]).

The commit routine which accompanies every CAMEL
task can be implemented as an inline or a naked function;
Figure 5.5 shows the overhead incurred by the inline version.
Both approaches produce binaries that scale linearly with
the number of tasks in a benchmark; the inline version pro-
duces larger but faster executables, while the naked function
approach produces smaller but slower executables. A naked
function call incurs a fraction of the run-time overhead of a
regular function call. It increases the run-time overhead of the

commit routine by a constant number of CPU cycles (∼5),
resulting in a negligible change in the overall run-time.

5.7 Automatic Systems

Automatic checkpointing systems [30, 52] remove all burden
from the programmer at the cost of increased checkpoint rate.
Because it is not the focus of the paper we exclude detailed
results, but our experiments show that CAMEL performs 4x
better than Ratchet [52] on FRAM-based boards, with even
better results on Flash-based devices due to Flash write/erase
overhead. Given that Chinchilla’s run-time overhead is com-
parable to Alpaca [30], we expect a similar 2x improvement.

6 Related Work

Just-in-time checkpointing approaches backup volatile state
to non-volatile memory just-in-time, i.e., with just enough
energy remaining to write the checkpoint [2, 3, 21, 41]. This
requires the ability to measure the energy in the system’s
storage capacitor. The need for an energy monitor increases
complexity and cost, as well as increasing overall energy
usage—introducing another draw on the energy available
for useful computation [52]. Just-in-time checkpointing sys-
tems minimize software overhead, but also introduce correct-
ness and programmability concerns when interacting with
peripheral devices or atomic operations. Samoyed [31] targets
just-in-time systems with low-power energy monitors and
introduces an interface for programmers to denote sections of
code as atomic, combining the state-rollback mechanisms of
task-based approaches with the low software overhead of just-
in-time systems. Samoyed brings reliable atomic peripheral
operations to just-in-time intermittent systems, but depends
on rollback mechanisms designed for FRAM-based systems;
one direction for future research is combining CAMEL’s effi-
cient task model with TotalRecall’s just-in-time approach to
enable similar functionality without high-performance NVM.

Continuous checkpointing eschews a single, large, just-
in-time, checkpoint of the entire volatile program state for
many small checkpoints of the volatile program state needed
to resume execution. Continuous checkpointing trades per-
formance for hardware-support-free intermittent computa-
tion; unfortunately, all such existing approaches—whether
architecture- or software-driven—are incompatible with Flash
devices due to Flash’s endurance and power limitations [16].

Continuous checkpointing fits naturally with sequential
hardware design which treats flip-flops as non-volatile state
and the combinational logic between them as volatile state.
Idetic [33] employs this model to support intermittent oper-
ation at the circuit level using existing high-level synthesis
tools. Conventional processor pipelines are compatible with
continuous checkpointing when treating pipeline registers as
non-volatile state and operations between stages as volatile

state. Non-volatile processors [27, 28] leverage this observa-
tion by implementing pipeline registers with non-volatile flip-
flops (e.g., FRAM). An alternative to non-volatile processors
is Clank [11], which enforces dynamic memory idempotency.

CAMEL improves existing programmer-guided intermit-
tent computation systems: combining Chain’s [6] expressive
programming interface with idempotence analysis as used
by Alpaca [29]. From this, CAMEL introduces the idea of of
swappable mixed-volatility worlds backed by a differential
analysis that allows data reuse across tasks. This improves
performance regardless of NVM type by reducing redundant
data copying. To enable programmer-guided approaches on
Flash devices, CAMEL bifurcates program data into a inter-
task non-volatile world and a intra-task volatile world.

Ratchet [52] and Chinchilla [30] replace programmer rea-
soning with compiler analysis to produce an automatic ap-
proach to supporting intermittent computation—at the cost
of removing the abstraction of forward progress atomicity
from the programmer. Ratchet decomposes programs into
restartable units using idempotence analysis while Chin-
chilla [30] builds on Ratchet with a smart timer and basic-
block-level energy estimation to elide checkpoints at run time.

7 Conclusion

This paper exposes and addresses the lifetime and perfor-
mance limitations of programmer-guided approaches to in-
termittent computation on both Flash devices. The improve-
ments center on the abstraction of two worlds that co-exist
during program execution: a non-volatile world that contains
the data tasks use to communicate and that is used for post-
power-cycle recovery and a volatile world that contains data
used by a task. The result is the first long-life, programmer-
guided intermittent computation system for Flash devices and
highest-performance for FRAM devices.

8 Acknowledgements

We thank the anonymous reviewers for their feedback and sug-
gestions that enhanced the quality of this work. The project
depicted is sponsored by the Defense Advanced Research
Projects Agency. The content of the information does not nec-
essarily reflect the position or the policy of the Government,
and no official endorsement should be inferred. Approved
for public release; distribution is unlimited. This material is
based upon work supported by the National Science Founda-
tion under Grant No. 2240744.

References

[1] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Cam-
pagna, Giacomo Caslini, Fabio Massimo Centonze,

Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-
mad Hamad Alizai, Junaid Haroon Siddiqui, and Luca
Mottola. Battery-less zero-maintenance embedded sens-
ing at the mithræum of circus maximus. In Proceedings
of the 18th Conference on Embedded Networked Sen-
sor Systems, SenSys ’20, page 368–381, New York, NY,
USA, 2020. Association for Computing Machinery.

[2] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola,
D. Brunelli, B. M. Al-Hashimi, G. V. Merrett, and
L. Benini. Hibernus++: A self-calibrating and adap-
tive system for transiently-powered embedded devices.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 35(12):1968–1980, March
2016.

[3] Domenico Balsamo, Alex Weddell, Geoff Merrett,
Bashir Al-Hashimi, Davide Brunelli, and Luca Benini.
Hibernus: Sustaining Computation during Intermittent
Supply for Energy-Harvesting Systems. In IEEE Em-
bedded Systems Letters, 2014.

[4] BBC News. Samsung confirms battery faults as cause
of Note 7 fires, January 2017. https://www.bbc.com/
news/business-38714461.

[5] Daniel Beer. Mspdebug, 2022. https://github.com/
dlbeer/mspdebug.

[6] Alexei Colin and Brandon Lucia. Chain: Tasks and
channels for reliable intermittent programs. In Inter-
national Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA, pages
514–530, October 2016.

[7] H. Desai and B. Lucia. A power-aware heterogeneous
architecture scaling model for energy-harvesting com-
puters. IEEE Computer Architecture Letters, 19(1):68–
71, 2020.

[8] Bin Fan, Dave G. Andersen, Michael Kaminsky, and
Michael D. Mitzenmacher. Cuckoo filter: Practically
better than bloom. In Proceedings of the 10th ACM In-
ternational on Conference on Emerging Networking Ex-
periments and Technologies, CoNEXT ’14, page 75–88,
New York, NY, USA, 2014. Association for Computing
Machinery.

[9] Josiah Hester, Timothy Scott, and Jacob Sorber. Ekho:
Realistic and repeatable experimentation for tiny energy-
harvesting sensors. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems,
2014.

[10] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Si-
tanayah, Daniel Holcomb, Kevin Fu, Wayne P. Burleson,

https://www.bbc.com/news/business-38714461
https://www.bbc.com/news/business-38714461
https://github.com/dlbeer/mspdebug
https://github.com/dlbeer/mspdebug

and Jacob Sorber. Persistent clocks for batteryless sens-
ing devices. ACM Transactions on Embedded Computer
Systems, 15(4):77:1–77:28, August 2016.

[11] Matthew Hicks. Clank: Architectural support for inter-
mittent computation. In International Symposium on
Computer Architecture, ISCA, pages 228–240, 2017.

[12] D. E. Holcomb, W. P. Burleson, and K. Fu. Power-Up
SRAM State as an Identifying Fingerprint and Source
of True Random Numbers. IEEE Transactions on Com-
puters, 58(9):1198–1210, September 2009.

[13] Daniel E. Holcomb, Amir Rahmati, Mastooreh Sala-
jegheh, Wayne P. Burleson, and Kevin Fu. Drv-
fingerprinting: Using data retention voltage of sram cells
for chip identification. In Proceedings of the 8th Inter-
national Conference on Radio Frequency Identification:
Security and Privacy Issues, RFIDSec’12, pages 165–
179, Berlin, Heidelberg, 2013. Springer-Verlag.

[14] G. Huang, L. Qian, S. Saibua, D. Zhou, and X. Zeng.
An efficient optimization based method to evaluate the
drv of sram cells. IEEE Transactions on Circuits and
Systems I: Regular Papers, 60(6):1511–1520, June 2013.

[15] Texas Instruments. MSP430G2955, MSP430G2855,
MSP430G2755 Mixed-Signal Microcontroller, March
2013. https://www.ti.com/lit/ds/symlink/
msp430g2955.pdf.

[16] Texas Instruments. MSP430 Flash Memory Character-
istics (Rev. B), 2018. http://www.ti.com/lit/an/
slaa334b/slaa334b.pdf.

[17] Texas Instruments. MSP430F5438A—
MSP430F543xA, MSP430F541xA Mixed-Signal
Microcontrollers, September 2018. http://www.ti.
com/lit/ds/symlink/msp430f5438a.pdf.

[18] Texas Instruments. MSP430FR5964—MSP430FR599x,
MSP430FR596x Mixed-Signal Microcontrollers, Au-
gust 2018. http://www.ti.com/lit/ds/symlink/
msp430fr5964.pdf.

[19] Texas Instruments. MSP430FR698x(1),
MSP430FR598x(1) Mixed-Signal Microcontrollers,
2018. http://www.ti.com/lit/ds/symlink/
msp430fr6989.pdf.

[20] Texas Instruments. MSP430G2553 LaunchPad Devel-
opment Kit (MSP-EXP430G2ET), 2018. http://www.
ti.com/lit/ug/slau772/slau772.pdf.

[21] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghu-
nathan. QUICKRECALL: A Low Overhead HW/SW
Approach for Enabling Computations across Power Cy-
cles in Transiently Powered Computers. In International

Conference on VLSI Design and International Confer-
ence on Embedded Systems, 2014.

[22] Joseph Kahn, Randy Katz, and Kristofer Pister. Next
Century Challenges: Mobile Networking for ”Smart
Dust”. In Conference on Mobile Computing and Net-
working (MobiCom), 1999.

[23] P. Koopman and T. Chakravarty. Cyclic redundancy
code (crc) polynomial selection for embedded networks.
In International Conference on Dependable Systems
and Networks, 2004, pages 145–154, June 2004.

[24] Marc de Kruijf, Karthikeyan Sankaralingam, and
Somesh Jha. Static analysis and compiler design for
idempotent processing. In Conference on Programming
Language Design and Implementation, PLDI, pages 475–
486, 2012.

[25] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. In In International Symposium on Code Generation
and Optimization, CGO, pages 75–86, 2004.

[26] Brandon Lucia and Benjamin Ransford. A simpler, safer
programming and execution model for intermittent sys-
tems. In Conference on Programming Language Design
and Implementation, PLDI, pages 575–585, 2015.

[27] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu,
J. Sampson, Y. Xie, and V. Narayanan. Architecture
exploration for ambient energy harvesting nonvolatile
processors. In IEEE International Symposium on High
Performance Computer Architecture, HPCA, pages 526–
537, Feb 2015.

[28] Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang
Zheng, Shuangchen Li, Yongpan Liu, Yuan Xie, John
Sampson, and Vijaykrishnan Narayanan. Nonvolatile
Processor Architectures: Efficient, Reliable Progress
with Unstable Power. In IEE Micro Volume 36, Issue 3,
2016.

[29] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Al-
paca: Intermittent execution without checkpoints. In
International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA,
pages 96:1–96:30, October 2017.

[30] Kiwan Maeng and Brandon Lucia. Adaptive dynamic
checkpointing for safe efficient intermittent computing.
In USENIX Conference on Operating Systems Design
and Implementation, OSDI, pages 129–144, November
2018.

[31] Kiwan Maeng and Brandon Lucia. Supporting peripher-
als in intermittent systems with just-in-time checkpoints.
In SIGPLAN Conference on Programming Language

https://www.ti.com/lit/ds/symlink/msp430g2955.pdf
https://www.ti.com/lit/ds/symlink/msp430g2955.pdf
http://www.ti.com/lit/an/slaa334b/slaa334b.pdf
http://www.ti.com/lit/an/slaa334b/slaa334b.pdf
http://www.ti.com/lit/ds/symlink/msp430f5438a.pdf
http://www.ti.com/lit/ds/symlink/msp430f5438a.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5964.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5964.pdf
http://www.ti.com/lit/ds/symlink/msp430fr6989.pdf
http://www.ti.com/lit/ds/symlink/msp430fr6989.pdf
http://www.ti.com/lit/ug/slau772/slau772.pdf
http://www.ti.com/lit/ug/slau772/slau772.pdf

Design and Implementation, PLDI, pages 1101–1116,
2019.

[32] Microchip. MCP4725 12-Bit Digital-to-Analog
Converter with EEPROM Memory in SOT-23-6,
2009. https://ww1.microchip.com/downloads/
en/devicedoc/22039d.pdf.

[33] A. Mirhoseini, E. M. Songhori, and F. Koushanfar. Ide-
tic: A high-level synthesis approach for enabling long
computations on transiently-powered ASICs. In Inter-
national Conference on Pervasive Computing and Com-
munications, PerCom, pages 216–224, March 2013.

[34] University of Washington. WISP 5 GitHub, April 2014.
http://www.github.com/wisp/wisp5.

[35] Sandro Pinto and Nuno Santos. Demystifying ARM
TrustZone: A comprehensive survey. ACM Computing
Surveys, 51(6), January 2019.

[36] Powercast. P2110B 915 MHz RF Power-
harvester Receiver, December 2016. https:
//www.powercastco.com/wp-content/uploads/
2016/12/P2110B-Datasheet-Rev-3.pdf.

[37] Powercast. TX91501B – 915 MHz Power-
caster Transmitter, October 2019. https://www.
powercastco.com/wp-content/uploads/2019/10/
User-Manual-TX-915-01B-Rev-A-1.pdf.

[38] Powercast. 915 mhz dipole antenna
datasheet, November 2020. https://www.
powercastco.com/wp-content/uploads/2020/
11/DA-915-01-Antenna-Datasheet_new_web.pdf.

[39] Huifang Qin, Yu Cao, Dejan Markovic, Andrei
Vladimirescu, and Jan Rabaey. Sram leakage suppres-
sion by minimizing standby supply voltage. In Pro-
ceedings of the 5th International Symposium on Quality
Electronic Design, ISQED ’04, pages 55–60, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[40] Benjamin Ransford and Brandon Lucia. Nonvolatile
Memory is a Broken Time Machine. In Workshop on
Memory Systems Performance and Correctness, 2014.

[41] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Me-
mentos: System Support for Long-Running Computa-
tion on RFID-Scale Devices. In Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2011.

[42] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM, 21(2):120–126, February 1978.

[43] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V.
Mamishev, and J. R. Smith. Design of an rfid-based
battery-free programmable sensing platform. IEEE
Transactions on Instrumentation and Measurement,
57(11):2608–2615, Nov 2008.

[44] Henry Sodano, Gyuhae Park, and Daniel Inman. Estima-
tion of Electric Charge Output for Piezoelectric Energy
Harvesting. In Strain, Volume 40, 2004.

[45] Fang Su, Kaisheng Ma, Xueqing Li, Tongda Wu, Yong-
pan Liu, and Vijaykrishnan Narayanan. Nonvolatile
processors: Why is it trending? In Proceedings of the
Conference on Design, Automation & Test in Europe,
DATE ’17, pages 966–971, 3001 Leuven, Belgium, Bel-
gium, 2017. European Design and Automation Associa-
tion.

[46] Terry A. Welch. A technique for high-performance data
compression. IEEE Computer, 17(6):8–19, 1984.

[47] Vishay. TEMT6000X01 Ambient Light Sensor,
2011. https://www.vishay.com/docs/81579/
temt6000.pdf.

[48] Mark Weiser. Ubiquitous computing. Computer, 10:71–
72, 1993.

[49] Harrison Williams, Xun Jian, and Matthew Hicks. For-
get failure: Exploiting SRAM data remanence for low-
overhead intermittent computation. In International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pages 69–
84, March 2020.

[50] Harrison Williams, Alexander Lind, Kishankumar
Parikh, and Matthew Hicks. Silicon Dating. arXiv,
abs/2009.04002, 2020. _eprint: 2009.04002.

[51] Harrison Williams, Michael Moukarzel, and Matthew
Hicks. Failure sentinels: Ubiquitous just-in-time in-
termittent computation via low-cost hardware support
for voltage monitoring. In International Symposium
on Computer Architecture, ISCA, pages 665–678, June
2021.

[52] Joel Van Der Woude and Matthew Hicks. Intermittent
computation without hardware support or programmer
intervention. In USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI, pages 17–32,
November 2016.

[53] X. Wu, I. Lee, Q. Dong, K. Yang, D. Kim, J. Wang,
Y. Peng, Y. Zhang, M. Saliganc, M. Yasuda, K. Kumeno,
F. Ohno, S. Miyoshi, M. Kawaminami, D. Sylvester, and
D. Blaauw. A 0.04MM3 16NW wireless and battery-
less sensor system with integrated cortex-m0+ processor

https://ww1.microchip.com/downloads/en/devicedoc/22039d.pdf
https://ww1.microchip.com/downloads/en/devicedoc/22039d.pdf
http://www.github.com/wisp/wisp5
https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf
https://www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-915-01B-Rev-A-1.pdf
https://www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-915-01B-Rev-A-1.pdf
https://www.powercastco.com/wp-content/uploads/2019/10/User-Manual-TX-915-01B-Rev-A-1.pdf
https://www.powercastco.com/wp-content/uploads/2020/11/DA-915-01-Antenna-Datasheet_new_web.pdf
https://www.powercastco.com/wp-content/uploads/2020/11/DA-915-01-Antenna-Datasheet_new_web.pdf
https://www.powercastco.com/wp-content/uploads/2020/11/DA-915-01-Antenna-Datasheet_new_web.pdf
https://www.vishay.com/docs/81579/temt6000.pdf
https://www.vishay.com/docs/81579/temt6000.pdf

and optical communication for cellular temperature mea-
surement. In IEEE Symposium on VLSI Circuits, pages
191–192, June 2018.

[54] Hong Zhang, Jeremy Gummeson, Benjamin Ransford,
and Kevin Fu. Moo: A Batteryless Computational RFID
and Sensing Platform. In Technical Report UMCS-2011-
020, 2011.

	Introduction
	Motivation
	Why Intermittent Computation on Flash Devices?
	Existing Programmer-guided Systems Kill Flash
	SRAM's Time-dependent Non-volatility
	Intermittent Off Times are Short

	Design
	System Overview
	Detecting Unexpectedly Long Off Times
	Bimodal Recovery Routine
	caMel Tasks
	caMel Compiler

	Implementation
	Compiler Analysis
	Compiler Modifications
	Recovery
	Correctness

	Evaluation
	Experimental Setup
	Programmer Effort
	Runtime: Flash Platforms
	Peripheral Operations
	Runtime: FRAM Platforms
	Binary Size
	Automatic Systems

	Related Work
	Conclusion
	Acknowledgements

